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11 Gravitational waves

In the preceding three chapters we stayed safely in the near zone and ignored all radiative
aspects of the motion of bodies subjected to a mutual gravitational interaction. In this
chapter we move to the wave zone and determine the gravitational waves produced by the
moving bodies. To achieve this goal we must return to the post-Minkowskian approximation
developed in Chapters 6 and 7, because the post-Newtonian techniques of Chapter 8 are
necessarily restricted to the near zone.

We begin in Sec. 11.1 by reviewing the notion of far-away wave zone, in which the
gravitational-wave field can be extracted from the (larger set of) gravitational potentials hαβ ;
we explain how to perform this extraction and obtain the gravitational-wave polarizations
h+ and h×. In Sec. 11.2 we derive the famous quadrupole formula, the leading term
in an expansion of the gravitational-wave field in powers of vc/c (with vc denoting a
characteristic velocity of the moving bodies); we flesh out this discussion by examining
a number of applications of the formula. Section 11.3 is a very long excursion into a
computation of the gravitational-wave field beyond the quadrupole formula, in which
we add corrections of fractional order (vc/c), (vc/c)2, and (vc/c)3 to the leading-order
expression. The calculations are carried out for a system of N bodies, and they reveal a
very interesting physical phenomenon: the fact that the waves propagate not in the fictitious
flat spacetime of post-Minkowskian theory, but in a physical spacetime which is curved
by the total mass-energy contained in the N -body system. The true waves are delayed
with respect to the fictitious waves because they climb out of a gravitational potential well
as they travel from the near zone to the wave zone. In Sec. 11.4 we convert the general
formalism of the preceding section into concrete expressions for h+ and h× by restricting
the number of bodies to two; we first derive general expressions for arbitrary (eccentric)
motion, and next specialize our results to circular orbits. We conclude the chapter with
Sec. 11.5, where we show how to relate the polarizations h+ and h× to the output channel
of a laser interferometric gravitational-wave detector.

The radiative themes explored in this chapter are developed further in Chapter 12, in
which we determine the effects of radiative losses on the motion of an N -body system. This
is the phenomenon of radiation reaction, which reveals a direct link between the near zone
and the wave zone.
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11.1 Gravitational-wave field and polarizations

11.1.1 Far-away wave zone

The notion of wave zone was first introduced back in Sec. 6.3.2; this is the region of
three-dimensional space in which R := |x| is larger than λc, the characteristic wavelength
of the gravitational-wave field. (In previous chapters the length of the position vector was
denoted r instead of R; for our purposes in this chapter we adapt the notation and keep r
available for a later assignment.) By far-away wave zone we mean the farthest reaches of
the wave zone, a neighborhood of spatial infinity in which the R−1 part of the gravitational
potentials hαβ dominates over the parts that fall off as R−2 and faster.

To illustrate these notions, and the distinctions between behavior in the near zone and
behavior in the wave zone, we return to the scalar dipole field of Box 6.6,

ψ(t, x) = ( p · N)

(
cos ωτ

R2
− ω

c

sin ωτ

R

)
, (11.1)

which is an exact solution to the wave equation �ψ = 0 outside a region of radius rc that
contains the source. The potential has the dimension of an inverse length, and p is a constant
vector of order rc; ω is the frequency of oscillation of the dipole, and the characteristic
wavelength is λc = 2πc/ω. We have re-introduced the retarded-time variable

τ := t − R/c (11.2)

and the unit vector

N := x/R , (11.3)

which points in the direction of the field point x. (In previous chapters the unit vector
was denoted n instead of N; here we change the notation and keep n available for a later
assignment.) We assume that the dipole is subjected to a slow-motion condition (refer
to Sec. 6.3.2), so that rc � λc. With tc = ω−1 denoting a characteristic time scale and
vc = rc/tc a characteristic velocity, we have that rc/λc ∼ vc/c � 1.

The near zone is defined to be the region of space where R < λc = 2πc/ω. In the near
zone the potential behaves as

ψ = ( p · N)
cos ωt

R2

[
1 + 1

2

(
ωR

c

)2

+ · · ·
]
, (11.4)

and we see that when R ∼ rc, the leading term is corrected by an expression of fractional
order (rc/λc)2 ∼ (vc/c)2. We may say that the correction is of 1pn order, and this is the same
near-zone behavior that was identified for the gravitational potentials of post-Newtonian
theory.

The wave zone is defined to be the region of space where R > λc = 2πc/ω. In the wave
zone the potential behaves as

ψ = − ω

cR
( p · N)

(
sin ωτ − c

ωR
cos ωτ

)
, (11.5)
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and we see that the leading term is corrected by an expression of fractional order λc/R. This
correction becomes increasingly irrelevant as R increases beyond λc, and it is completely
negligible in the far-away wave zone, our adopted vantage point in this chapter.

The gravitational-wave field is obtained by evaluating the gravitational potentials hαβ in
the far-away wave zone, where we neglect corrections of order λc/R � 1. How good is
this approximation? For a source of gravitational waves with a frequency of 100 Hz (λc ∼
3000 km) at a distance of 100 Mpc (3 × 1021 km), the neglected terms are of order 10−18,
making this an excellent approximation indeed. Only a subset of the potentials is actually
involved: as we shall see below, the gravitational-wave field is the transverse-tracefree (TT)
piece of the complete set of potentials, and this is what we aim to calculate in this chapter.
We assume that the source of the gravitational field is a bounded distribution of matter
subjected to a slow-motion condition, so that it lies well within the near zone.

11.1.2 Gravitational potentials in the far-away wave zone

In Chapter 7 we obtained expressions for the gravitational potentials hαβ that are applica-
ble in the wave zone. These expressions were accurate in the second post-Minkowskian
approximation of general relativity. From the summary provided in Box 7.7, we gather that
their behavior in the far-away wave zone is given by

h00 = 4G M

c2 R
+ G

c4 R
C(τ, N) , (11.6a)

h0 j = G

c4 R
D j (τ, N) , (11.6b)

h jk = G

c4 R
A jk(τ, N) . (11.6c)

Here, M is the total gravitational mass, as defined by Eq. (7.63) in the case of a fluid
system, or by Eq. (9.132) in the case of an N -body system. The functions C , D j , and
A jk depend on the retarded-time variable τ := t − R/c and the unit vector N := x/R.
We shall not need their precise forms just yet. In fact, the validity of Eqs. (11.6) extends
beyond the post-Minkowskian domain of Sec. 7.1.4. It is easy to show that these equations
provide solutions to the wave equations �hαβ = 16πGταβ/c4 provided only that ταβ , the
effective energy-momentum pseudotensor, falls off at least as fast as R−2. The impact of
the harmonic gauge conditions ∂βhαβ = 0 on the solutions is examined below.

Before we proceed we introduce a useful differentiation rule that applies in the far-away
far zone:

∂ j h
αβ = −1

c
N j∂τ hαβ . (11.7)

The rule follows from the fact that the potentials depend on the spatial coordinates x j

through the overall factor of R−1, and through the dependence of the functions C , D j , and
A jk on τ and N . Because ∂ j R−1 = O(R−2) and ∂ j Nk = O(R−1), the only dependence
that matters is in τ , and we have that ∂ jτ = −c−1∂ j R = −c−1 N j . This, finally, leads to
Eq. (11.7), in which a correction term of order R−2 is omitted.
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11.1.3 Decomposition into irreducible components

Before we examine the impact of the gauge conditions ∂βhαβ = 0 on the gravitational
potentials, it is useful to decompose the vector D j and the tensor A jk into longitudinal and
transverse components. The longitudinal direction is identified with N , and the machinery
to achieve the decomposition was developed back in Sec. 5.5; it is summarized in Box 5.7.
The decomposition is simplified by the differential rule of Eq. (11.7).

We write

D j = DN j + D j
T , (11.8)

with DN j representing the longitudinal part of D j , and D j
T its transverse part; the latter is

required to satisfy

N j D j
T = 0 . (11.9)

The three components of D j are therefore partitioned into one longitudinal component D,
and two transverse components contained in D j

T; these are functions of τ and N . Similarly,
we write

A jk = 1

3
δ jk A +

(
N j N k − 1

3
δ jk
)

B + N j Ak
T + N k A j

T + A jk
TT , (11.10)

which is a decomposition of A jk into a trace part 1
3δ jk A, a longitudinal-tracefree part

(N j N k − 1
3δ jk)B, a longitudinal-transverse part N j Ak

T + N k A j
T, and a transverse-tracefree

part A jk
TT. We impose the constraints

N j A j
T = 0 (11.11)

and

N j A jk
TT = 0 = δ jk A jk

TT , (11.12)

so that the six independent components of A jk are contained in two scalars A and B, two
components of a transverse vector A j

T, and two components of a transverse-tracefree tensor
A jk

TT. The last term in Eq. (11.10) is called the transverse-tracefree part, or TT part, of A jk .
As we shall see, the radiative parts of the gravitational potentials are contained entirely
within A jk

TT.

11.1.4 Harmonic gauge conditions

The harmonic gauge conditions are c−1∂τ h00 + ∂kh0k = 0 and c−1∂τ h0 j + ∂kh jk = 0. In
the far-away wave zone they simplify to

∂τ

(
h00 − h0k Nk

) = 0 , ∂τ

(
h0 j − h jk Nk

) = 0, (11.13)

thanks to the differentiation rule of Eq. (11.7). After substituting Eqs. (11.8) and (11.10)
into Eqs. (11.6), and these into Eqs. (11.13), we find that the harmonic gauge conditions



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-11 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:7

543 11.1 Gravitational-wave field and polarizations

imply

C = D , (11.14a)

D = 1

3
A + 2

3
B , (11.14b)

D j
T = A j

T . (11.14c)

We have set the constants of integration to zero, because an eventual τ -independent term
in C would correspond to an unphysical shift in the total gravitational mass M , while a
τ -independent term in D j would be incompatible with the fact that the time-independent
part of h0 j is associated with the total angular momentum, and must fall off as R−2 instead
of R−1.

Incorporating these constraints, the gravitational potentials become

h00 = 4G M

c2 R
+ G

c4 R

1

3

(
A + 2B

)
, (11.15a)

h0 j = G

c4 R

[
1

3
(A + 2B)N j + A j

T

]
, (11.15b)

h jk = G

c4 R

[
1

3
δ jk A +

(
N j N k − 1

3
δ jk
)

B + N j Ak
T + N k A j

T + A jk
TT

]
, (11.15c)

in which A, B, A j
T, and A jk

TT are functions of τ and N . We now have a total of six independent
quantities: one in A, another in B, two in A j

T, and two more in A jk
TT. The gauge conditions

have eliminated four redundant quantities.

11.1.5 Transformation to the TT gauge

It is possible, in the far-away wave zone, to specialize the harmonic gauge even further, and
to eliminate four additional redundant quantities. We wish to implement a gauge transfor-
mation generated by a four-vector field ζ α(xβ) chosen so as to preserve the harmonic-gauge
conditions, ∂βhαβ = 0. We first figure out how such a transformation affects the gravita-
tional potentials hαβ .

We saw back in Sec. 5.5 that when the spacetime metric is expressed as gαβ = ηαβ + pαβ ,
where ηαβ is the Minkowski metric and pαβ is a perturbation, a gauge transformation
produces the change

pαβ → pαβ − ∂αζβ − ∂βζα (11.16)

to first order in the small quantities pαβ and ∂αζβ , where ζα := ηαβζ β ; this is Eq. (5.122).
To relate pαβ to the gravitational potentials we appeal to Eqs. (7.20), which states that

gαβ = ηαβ + hαβ − 1

2
h ηαβ + O(h2) , (11.17)
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where hαβ = ηαμηβνhμν and h = ημνhμν ; in the far-away wave zone we can neglect the
terms quadratic in hαβ , because they fall off as R−2. We find that

hαβ = pαβ − 1

2
p ηαβ , (11.18)

where p = ημν pμν . It follows that the gauge transformation produces the change

hαβ → hαβ − ∂αζ β − ∂βζ α + (∂μζμ
)
ηαβ (11.19)

in the gravitational potentials. We next find that ∂βhαβ → ∂βhαβ − �ζ α and conclude that
the harmonic gauge conditions will be preserved whenever the vector field satisfies the
wave equation

�ζ α = 0 . (11.20)

We wish to preserve the harmonic gauge, and we construct a solution to the wave equation
by writing

ξ 0 = G

c3 R
α(τ, N) + O(R−2) , (11.21a)

ξ j = G

c3 R
β j (τ, N) + O(R−2) , (11.21b)

where α and β j are arbitrary functions of their arguments, and the factors of G/c3 were
inserted for convenience. As before we decompose the vector in terms of its irreducible
components,

β j = βN j + β
j

T , N jβ
j

T = 0 . (11.22)

We differentiate ξ 0 and ξ j using the differentiation rule of Eq. (11.7), and insert the results
within Eq. (11.19). After also involving Eqs. (11.15), we eventually deduce that the gauge
transformation produces the changes

A → A + 3∂τα − ∂τβ , (11.23a)

B → B + 2∂τβ , (11.23b)

A j
T → A j

T + ∂τβ
j

T , (11.23c)

A jk
TT → A jk

TT (11.23d)

in the irreducible pieces of the gravitational potentials.
We see that the transverse-tracefree part of A jk is invariant under the gauge transforma-

tion. We see also that α, β, and β
j

T can be chosen so as to set A, B, and A j
T all equal to

zero. Implementing this gauge transformation, we arrive at the simplest expression for the
gravitational potentials in the far-away wave zone:

h00 = 4G M

c2 R
, (11.24a)

h0 j = 0 , (11.24b)

h jk = G

c4 R
A jk

TT(τ, N) . (11.24c)
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By virtue of the conditions imposed in Eq. (11.12), N j A jk
TT = 0 = δ jk A jk

TT, the number
of time-dependent quantities has been reduced to two. The gravitational potentials of
Eqs. (11.24) are said to be in the transverse-tracefree gauge, or TT gauge, a specialization
of the harmonic gauge that can be achieved in the far-away wave zone. It is clear that
the radiative degrees of freedom of the gravitational field must be contained in the two
independent components of A jk

TT.

11.1.6 Geodesic deviation

This conclusion, that A jk
TT contains the radiative degrees of freedom, is reinforced by the

following argument. Suppose that a gravitational-wave detector consists of two test masses
that are moving freely in the far-away wave zone. The masses are separated by a spacetime
vector ξα , and they move with a four-velocity uα . Assuming that the distance between the
masses is small compared with the radiation’s characteristic wavelength (this defines a short
gravitational-wave detector such as the LIGO instrument), the behavior of the separation
vector is governed by the equation of geodesic deviation,

D2ξα

ds2
= −Rα

βγ δuβξγ uδ , (11.25)

in which D/ds indicates covariant differentiation in the direction of uα , and where Rα
βγ δ

is the Riemann tensor. This equation was first encountered back in Sec. 5.2, see Eq. (5.67).
Assuming in addition that the test masses are moving slowly, this equation reduces to the
approximate form of Eq. (5.68),

d2ξ j

dt2
= −c2 R0 j0kξ

k ; (11.26)

this involves ordinary differentiation with respect to t , as well as the spatial components of
the separation vector.

It is a straightforward exercise to compute the Riemann tensor associated with the metric
gαβ = ηαβ + hαβ − 1

2 hηαβ , even when the gravitational potentials are expressed in their
general form of Eqs. (11.15). Alternatively, one can proceed from Eqs. (11.24) and appeal
to the fact that the Riemann tensor is invariant under a gauge transformation (as was
established back in Sec. 5.5). In any event, the computation reveals that

c2 R0 j0k = − G

2c4 R
∂ττ A jk

TT , (11.27)

and the equation of geodesic deviation becomes

d2ξ j

dt2
= G

2c4 R

(
∂ττ A jk

TT

)
ξk = 1

2

(
∂ττ h jk

TT

)
ξk . (11.28)

This equation can be integrated immediately if we assume that h jk
TT is small. We have that

ξ j (t) = ξ j (0) + 1

2
h jk

TT(t − R/c)ξk(0) , (11.29)

and we see that changes in the displacement vector are driven by h jk
TT and proportional to

the initial separation ξ k(0).



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-11 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:7

546 Gravitational waves

We conclude that our gravitational-wave detector is driven by the TT piece of the gravita-
tional potentials, which therefore captures the radiative degrees of freedom. The remaining
pieces contain no radiative information; the fact that they can be eliminated by a coordinate
transformation makes it clear that they contain only information about the coordinate sys-
tem. Henceforth we shall refer to h jk

TT specifically as the gravitational-wave field; we shall
continue to refer to h jk as the (spatial components of) the gravitational potentials.

11.1.7 Extraction of the TT part

Given gravitational potentials presented in the general form of Eq. (11.6),

h jk = G

c4 R
A jk(τ, N) , (11.30)

the radiative pieces can be extracted by isolating the transverse-tracefree part of A jk . This
can be done efficiently by introducing the TT projector (tt) jk

pq , and by writing

A jk
TT = (tt) jk

pq Apq . (11.31)

The TT projector is constructed as follows. We first introduce the transverse projector

P j
k := δ

j
k − N j Nk , (11.32)

which removes the longitudinal components of vectors and tensors. For example, for a vector
A j = AN j + A j

T with N j A j
T = 0, we have that P j

k Ak = A j
T. The transverse projector

satisfies

P j
k N k = 0 , P j

j = 2 , P j
p P p

k = P j
k . (11.33)

The TT projector is obtained by acting with the transverse projector twice and removing
the trace:

(tt) jk
pq := P j

p Pk
q − 1

2
P jk Ppq . (11.34)

It is easy to see that this possesses the required properties. First, (tt) jk
pq N q = 0; second,

(tt) jk
pqδ

pq = 0; and third, (tt) jk
pq Apq

TT = A jk
TT if the tensor A jk

TT is already transverse and
tracefree. For a general symmetric tensor A jk decomposed as in Eq. (11.10), it is easy to
verify that

(tt) jk
pq Apq = A jk

TT . (11.35)

This equation informs us that the TT part of any symmetric tensor A jk can be extracted by
acting with the TT projector defined by Eq. (11.34).

To carry out these manipulations it is convenient to introduce a vectorial basis in the
transverse subspace. Having previously selected N as the longitudinal direction, we param-
eterize it with the polar angles ϑ and ϕ by writing

N := [sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ] . (11.36)

We next introduce the unit vectors

ϑ := [cos ϑ cos ϕ, cos ϑ sin ϕ,− sin ϑ] (11.37)
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and

ϕ := [− sin ϕ, cos ϕ, 0] , (11.38)

which are orthogonal to N and to each other. The vector ϑ points in the direction of
increasing colatitude on the surface of a sphere, while ϕ points in the direction of increasing
longitude; they span the transverse subspace orthogonal to N , which is normal to the sphere.
The basis gives us the completeness relations

δ jk = N j N k + ϑ jϑk + ϕ jϕk , (11.39)

and it follows from Eq. (11.32) that the transverse projector is given by

P jk = ϑ jϑk + ϕ jϕk . (11.40)

This can be inserted within Eq. (11.34) to form the TT projector.
The transverse basis formed by ϑ and ϕ is not unique. For any longitudinal direction

N we may rotate the unit vectors by an angle ψ around N and thereby obtain a new basis
(ϑ ′,ϕ′). The operation is described by

ϑ ′ = cos ψ ϑ + sin ψ ϕ, ϕ′ = − sin ψ ϑ + cos ψ ϕ . (11.41)

The equations (11.39) and (11.40) are invariant under such a rotation.
Any symmetric, transverse, and tracefree tensor A jk

TT can be decomposed in a tensorial
basis that is built entirely from the vectors ϑ and ϕ. Such a tensor has two independent
components, which we denote A+ and A× and call the polarizations of the tensor A jk

TT. We
write

A jk
TT = A+

(
ϑ jϑk − ϕ jϕk

)+ A×
(
ϑ jϕk + ϕ jϑk

)
, (11.42)

so that A+ represents the ϑ-ϑ component of the tensor (and also minus the ϕ-ϕ component,
in order to satisfy the tracefree condition), while A× represents its ϑ-ϕ component. It is
easy to check that Eq. (11.42) implies

A+ = 1

2

(
ϑ jϑk − ϕ jϕk

)
A jk

TT , (11.43a)

A× = 1

2

(
ϑ jϕk + ϕ jϑk

)
A jk

TT . (11.43b)

Because the tensorial operators acting on A jk
TT are already transverse and tracefree, this can

also be written as

A+ = 1

2

(
ϑ jϑk − ϕ jϕk

)
A jk , (11.44a)

A× = 1

2

(
ϑ jϕk + ϕ jϑk

)
A jk , (11.44b)

in which the projection operators are acting on the original tensor A jk instead of its TT part
A jk

TT.
Under the rotation of Eq. (11.41) the polarizations of A jk

TT transform according to

A′
+ = cos 2ψ A+ + sin 2ψ A× , A′

× = − sin 2ψ A+ + cos 2ψ A× . (11.45)
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It is easy to verify that Eqs. (11.41) and (11.45) ensure that Eqs. (11.42), (11.43), and
(11.44) stay invariant under a rotation of the transverse basis.

Equations (11.44), together with the definitions of Eqs. (11.37) and (11.38), provide an
efficient way of extracting the polarizations A+ and A× from a general tensor A jk . The end
results are

A+ = −1

4
sin2 ϑ(Axx + Ayy) + 1

4
(1 + cos2 ϑ) cos 2ϕ (Axx − Ayy)

+ 1

2
(1 + cos2 ϑ) sin 2ϕ Axy − sin ϑ cos ϑ cos ϕ Axz − sin ϑ cos ϑ sin ϕ Ayz

+ 1

2
sin2 ϑ Azz , (11.46a)

A× = −1

2
cos ϑ sin 2ϕ (Axx − Ayy) + cos ϑ cos 2ϕ Axy + sin ϑ sin ϕ Axz

− sin ϑ cos ϕ Ayz . (11.46b)

With A+ and A× known, A jk
TT can be constructed with the help of Eq. (11.42); the complete

listing of components is

Axx
TT = −1

2

[
sin2 ϑ − (1 + cos2 ϑ) cos 2ϕ

]
A+ − cos ϑ sin 2ϕ A× , (11.47a)

Axy
TT = 1

2
(1 + cos2 ϑ) sin 2ϕ A+ + cos ϑ cos 2ϕ A× , (11.47b)

Axz
TT = − sin ϑ cos ϑ cos ϕ A+ + sin ϑ sin ϕ A× , (11.47c)

Ayy
TT = −1

2

[
sin2 ϑ + (1 + cos2 ϑ) cos 2ϕ

]
A+ + cos ϑ sin 2ϕ A× , (11.47d)

Ayz
TT = − sin ϑ cos ϑ sin ϕ A+ − sin ϑ cos ϕ A× , (11.47e)

Azz
TT = sin2 ϑ A+ . (11.47f)

For example, when the wave travels in the y-direction, so that ϑ = ϕ = π
2 , we have that

A+ = 1
2 (Azz − Axx ) and A× = Axz . We also have Azz

TT = −Axx
TT = A+ and Axz

TT = A× as
the only non-vanishing components of the transverse-tracefree tensor.

11.1.8 Distortion of a ring of particles by a gravitational wave

A useful way to visualize the gravitational-wave polarizations is to examine the geodesic
deviations that they generate. Consider an initially circular ring of freely moving particles
in an inertial frame. A gravitational wave travels in the z-direction past the ring, which
lies in the x-y plane. In this case ϑ = 0, and we can choose ϕ = 0. Equations (11.47)
reveal that Axx

TT = −Ayy
TT = A+ and Axy

TT = Ayx
TT = A×, and the other components vanish.

The components are conveniently displayed as a matrix,

A jk
TT =

⎛
⎝A+ A× 0

A× −A+ 0
0 0 0

⎞
⎠ . (11.48)
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+ polarization

× polarization

Fig. 11.1 Effect of the+ and× gravitational-wave polarizations on a circular ring of freely falling particles. The wave
propagates out of the page, and a complete wave cycle is shown from left to right.

The displacement of a given particle from the center of the ring is given by the solution
(11.29) to the geodesic deviation equation. We have

ξ j (t) = ξ j (0) + G

2c4 R
A jk

TT ξk(0) , (11.49)

or

x(t) = x0 + G

2c4 R

(
A+x0 + A×y0

)
, (11.50a)

y(t) = y0 + G

2c4 R

(
A×x0 − A+y0

)
, (11.50b)

z(t) = z0, (11.50c)

in terms of the (x, y, z) components of the deviation vector ξ .
Consider now a pure + mode. It is simple to show that a circle of particles of unit radius

will be distorted into an ellipse described by(
x

1 + η+

)2

+
(

y

1 − η+

)2

= 1 , (11.51)

where η+(t) = 1
2 (G/c4 R)A+(t) is assumed to be small. As η+(t) varies between its max-

imum and minimum value, the ellipse transforms between the shapes shown in the upper
panel of Fig. 11.1, passing through a circular shape when η+(t) = 0. Similarly, for a pure
× mode the circle will be distorted into an ellipse described by

1

2

(
x + y

1 + η×

)2

+ 1

2

(
x − y

1 − η×

)2

= 1 , (11.52)

where η×(t) = 1
2 (G/c4 R)A×(t). This is the same as the first ellipse, except that it is rotated

by 45 degrees. In both cases the area of the ellipse is constant to first order in η. The ring
is unaffected in the z-direction, a reminder that the waves are transverse.
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Box 11.1 Why 45 degrees?

It is evident from Fig. 11.1 that a rotation of 45 degrees takes a+mode into a×mode and vice versa. This
is also clear from Eq. (11.45). Alternatively, we can state that the two modes of polarization are related by a
rotation ofπ/4 about the direction of propagation. In electromagnetism, the two modes of polarization are
related by a rotation ofπ/2 (think of the electric field pointing along the x-axis versus the y-axis). Fundamen-
tally this is because electrodynamics is associated with a vector field, while gravity is associated with a tensor
field. There is a close connection between the rotation angle and the helicity or spin of the particle that one
might associate with the waves: it is given byπ/(2S), where S is the spin of the particle in units of h̄. Thus
for photons (S = 1), the angle is 90 degrees. For the putative graviton that is often associated with gravity
(although no fully quantized theory of gravity exists at present), S = 2, leading to the 45 degree angle. For
a spin- 1

2 particle like an electron, the rotation angle isπ , as is well known from the Dirac equation.

11.2 The quadrupole formula

In the preceding section we saw that the gravitational-wave field is described by the
transverse-tracefree piece of the potentials h jk = G A jk/(c4 R), and we developed methods
to extract these radiative pieces from a known tensor A jk . In this section we provide an
expression for A jk and examine some applications of the resulting formalism.

11.2.1 Formulation

The tensor A jk was, in fact, calculated back in Chapter 7, in the context of a post-
Minkowskian approximation to general relativity. The gravitational potentials were com-
puted for the specific case of a matter distribution consisting of a perfect fluid subjected
to a slow-motion condition. The results are summarized in Box 7.7. To leading-order in a
post-Newtonian expansion in powers of vc/c we have that A jk = 2Ï jk , where

I jk(τ ) :=
∫

M
c−2τ 00(τ, x′)x ′ j x ′k d3x ′

=
∫

M
ρ∗(τ, x′)x ′ j x ′k d3x ′ + O(c−2) (11.53)

is the mass quadrupole moment of the matter distribution. The quadrupole formula for the
gravitational-wave field is therefore h jk

TT = (2G/c4 R)Ï jk
TT, in which an overdot indicates

differentiation with respect to τ .
We remark that this result was derived after two iterations of the relaxed Einstein equa-

tions. Two iterations were required to ensure that the fluid’s equations of motion incorporate
gravity at the Newtonian level. But the quadrupole formula appears to be linear in G, and
one might be tempted to think that it could have been derived more simply using linearized
theory, as presented in Sec. 5.5. One would be wrong, because in linearized theory the
fluid does not respond to gravity, and the domain of validity of the result would be severely
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limited. The fact that the gravitational-wave field has such a “linearized” look is to some
degree coincidental; it has been the source of endless confusion in the literature.

Equation (11.53) displays the leading contribution to I jk in a post-Newtonian expansion.
In Sec. 11.3 we obtain higher-order corrections to this expression, but in this section we
stick to the lowest-order terms. With this in mind, we choose to reserve the notation I jk for
the formal, iterated expression for the quadrupole-moment tensor, and define a Newtonian
quadrupole moment by

I jk(τ ) :=
∫

ρ∗(τ, x′)x ′ j x ′k d3x ′ . (11.54)

The lowest order gravitational-wave field can then be written as

h jk
TT = 2G

c4 R
Ï jk
TT , (11.55)

in terms of the Newtonian moment. Note that we use ρ∗ as our main density variable instead
of the proper density ρ; since these differ by corrections of order c−2, we may ignore the
difference, but ρ∗ is a more convenient density to use in a relativistic context.

Equation (11.55) is easily turned into a robust order-of-magnitude estimate for the
gravitational-wave amplitude h0; this is defined in such a way that a typical component of
h jk

TT is of the order of h0. We imagine that the waves are produced by a matter distribution of
mass M confined to a volume of radius rc, and that changes in the matter distribution occur
over a time scale tc; the source’s characteristic velocity is then vc ∼ rc/tc. The quadrupole-
moment tensor scales as Mr2

c , and Ï jk is of order M(rc/tc)2 ∼ Mv2
c . Then Eq. (11.55)

gives

h0 ∼ G M

c2 R
(vc/c)2 , (11.56)

and we see that strong waves are produced when a large mass M is involved in a rapid
process with vc ∼ c. It is important to understand that vc characterizes only the part of
the motion that deviates from spherical symmetry; a spherical matter distribution would
have I jk ∝ δ jk , I jk

TT = 0, and would not emit gravitational waves. (This conclusion is not
limited to the quadrupole approximation. It is an exact consequence of general relativity
that a spherically-symmetric matter distribution does not emit gravitational waves. This
is the statement of Birkhoff’s theorem, first encountered in Sec. 5.6.2.) To estimate h0

numerically we imagine an astrophysical process that involves a mass M = 10 M� situated
at a distance R = 1 Mpc, which corresponds to the approximate size of the local group of
galaxies. Under these conditions Eq. (11.56) gives rise to the estimate

h0 ∼ 4.8 × 10−19

(
M

10 M�

)(
1 Mpc

R

)(
vc/c

)2
. (11.57)

This exercise reveals that even the most violent events in the universe produce tiny gravi-
tational waves.

To obtain a more precise expression for h jk
TT we must evaluate the time derivatives of the

quadrupole-moment tensor and carry out the transverse-tracefree projection. The second
operation is simple, and relies on the results displayed in Eqs. (11.44) and (11.46). The first
operation relies on a knowledge of the fluid dynamics, which is governed by the Newtonian
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limit of the equations of hydrodynamics, ρ∗dv j/dt = ρ∗∂ jU − ∂ j p, where v j is the fluid’s
velocity field, U the Newtonian gravitational potential, and p the pressure. This is the Euler
equation, first encountered in its Newtonian form back in Sec. 1.4, and then in relativistic
form in Sec. 7.3.2, refer to Eq. (7.58).

The second derivative of the quadrupole-moment tensor is provided by the virial
theorem,

1

2
Ï jk = 2T jk + � jk + Pδ jk, (11.58)

where

T jk = 1

2

∫
ρ∗v jvk d3x, (11.59a)

� jk = −1

2
G

∫
ρ∗ρ∗′ (x − x ′) j (x − x ′)k

|x − x′|3 d3x ′d3x, (11.59b)

P =
∫

p d3x . (11.59c)

The virial theorem is a direct consequence of the Euler equation; it was first derived in the
context of Newtonian mechanics back in Sec. 1.4.3, see Eq. (1.88). It is understood that
here, T jk , � jk , and P are all functions of retarded time τ ; inside the integrals ρ∗, v j , and
p are functions of τ and x, while ρ∗′ is a function of τ and x′.

When the virial theorem is inserted in Eq. (11.55), h jk is seen to contain terms that
are both linear and quadratic in G; the linear terms come from 2T jk and Pδ jk , while the
quadratic terms come from � jk . The virial theorem implies that in general, the contributions
from 2T jk , � jk , and Pδ jk are all comparable to each other, because the sum of terms must
vanish on the average. This indicates that the terms of order G2 in h jk are comparable to
the terms of order G, and that a proper derivation of the quadrupole formula must be based
on a second post-Minkowskian approximation to general relativity. A derivation based on
the linearized theory (first post-Minkowskian approximation) would omit the G2 terms and
give rise to the wrong answer for the gravitational-wave field. As we observed previously,
the additional factor of G does not show up when the field is expressed in terms of Ï jk ,
but in fact it is hidden within the time derivatives, which demand the use of the Newtonian
equations of motion.

An exception to this rule occurs when the fluid dynamics is dominated by pressure
gradients and gravity is relatively unimportant. In this case 2T jk and Pδ jk are both much
larger than � jk , and the terms of order G2 can be neglected in h jk . In this restricted context
the quadrupole formula can be reliably derived on the basis of the linearized theory or a
single iteration of the relaxed Einstein equations. One obtains Eq. (11.55), but with the
important restriction that the source dynamics cannot involve the gravitational field. Such
a derivation would be valid for gravitational waves emitted by a source with negligible
self-gravity, such as a rotating dumbbell.

In the formulation of the quadrupole formula given here, the fluid system can be of one
continuous piece, or it can be broken up into N separated components; this would represent
an N -body system of fluid bodies. When the internal structure of each body can be ignored,



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-11 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:7

553 11.2 The quadrupole formula

we may adopt the point-mass description developed in Sec. 9.6 and set

ρ∗ =
∑

A

MAδ(x − r A), (11.60)

where MA is the total mass-energy of the body identified by the label A, and r A is its
position vector evaluated at time τ . In this case the quadrupole moment tensor reduces to

I jk =
∑

A

MAr j
Ark

A, (11.61)

and the dynamics of the system is governed by Newton’s equations of motion. These
are aA = −∑B 	=A G MB nAB/r2

AB , where r AB := r A − r B , rAB := |r A − r B |, and nAB :=
r AB/rAB . In this case the virial theorem becomes

1

2
Ï jk = −1

2

∑
A

∑
B 	=A

G MA MB

rAB
n j

ABnk
AB +

∑
A

MAv
j
Avk

A, (11.62)

where vA := d r A/dτ is the velocity vector of body A. This can be obtained by differen-
tiating Eq. (11.61) and involving the equations of motion, or directly from Eq. (11.58) by
exploiting the regularization techniques developed in Sec. 9.6.

Box 11.2 The quadrupole-formula controversy

In a remarkable pair of papers published in 1916 and1918, Einstein calculated the gravitational-wavefield and
radiated energy of a time-dependent source, such as a rotating dumbbell, for which self-gravity is unimpor-
tant. He performed this computation in a slow-motion approximation, using the linearized Einstein equations,
and obtained the quadrupole formula (11.55). It is perhaps a slight exaggeration to say that it was all downhill
from there, at least until 1979.
It didn’t help that Einsteinmade a calculational error in his 1918paper, leading to awrong factor of two, dis-

covered later by Eddington. Nor did it help that Eddington, concerned about the gauge freedomavailable in the
description of gravitational waves, wondered in 1922 whether aspects of gravitational waves were physically
real or purely coordinate artifacts; as he put it, perhaps they “propagate with the speed of thought.” Although
Eddington understood that the gauge-invariant modes were physical and believed that gravitational waves
did exist, his remark, taken out of context, had the effect of making the entire subject seem dubious.
To make matters worse, in 1936 Einstein and his young colleague Nathan Rosen (of Einstein–Podolsky–

Rosen paradox fame) submitted a paper to The Physical Review with the provocative title “Do gravitational
waves exist?”. They thought they had found an exact solution of the field equations describing a plane gravita-
tionalwave, but because the solutionhad a singularity, it could not bephysically valid, and they concluded that
gravitational waves could not exist. The Physical Review sent the paper for review, and the report that came
back pointed out that the Einstein–Rosen solution in fact described a cylindrical wave, and that the singularity
wasmerely a harmless coordinate singularity associatedwith the axis. So the solutionwas perfectly valid, and
in fact it supported the existence of gravitational waves. Einstein was so angry that the journal had sent his
paper out to be refereed, a practice that was unfamiliar to him, that he withdrew the paper and never pub-
lished again in that journal. Shortly thereafter, however, Einstein was convinced by another of his assistants,
Leopold Infeld (who had been approached by the anonymous referee), that the referee had been perfectly cor-
rect. Einstein rewrote the paperwith the opposite conclusion and published it under the title “On gravitational
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radiation” (but not in The Physical Review). While there has been plenty of speculation as to the identity of the
anonymous referee, it wasn’t until 2005 that our friend Daniel Kennefick was allowed access to the records
of the journal and revealed conclusively that the referee was the well-known Princeton and Caltech relativist
H.P. Robertson (the co-discoverer of the Robertson–Walker metric for cosmology).
This episodedidnot end thedebateover theexistenceof gravitationalwaves. Even if oneaccepts the validity

of Einstein’s prediction that a rotating dumbbell will radiate gravitational waves, the argument was made
that a binary-star system would not radiate. After all, each body is moving on a geodesic, and is therefore
unaccelerated relative to a local freely falling frame. Without acceleration, the argument went, there should
be no radiation. Peter Havas was one of the proponents of this possibility.
Beginning in the late 1940s, numerous attempts were made to calculate the “back reaction” forces that

would alter themotion of a binary system in response to the radiation of energy and angularmomentum (this
is the primary subject of Chapter 12). Yet different workers got different answers.
By 1974, while most researchers in the field accepted the reality of gravitational waves and the valid-

ity of the quadrupole formula for slowly moving binary systems, a vocal minority remained skeptical. This
“quadrupole-formula controversy” came to a head with the September 1974 discovery of the first binary pul-
sar byRussell Hulse and JosephTaylor. Itwas immediately clear that itwouldbepossible to test thequadrupole
formula by exploiting the high-precision timing of the pulsar’s radio signals to measure the slow variation in
the orbit induced by the loss of orbital energy to radiation.
But in a letter published in the Astrophysical Journal in 1976, Jürgen Ehlers, Arnold Rosenblum, Joshua

Goldberg, andPeterHavas argued that thequadrupole formula couldnot be justifiedas a theoretical prediction
of general relativity. They presented a laundry list of theoretical problems that they claimed had been swept
under the rug by proponents of the quadrupole formula. Among them were these: people assumed energy
balance to infer the reaction of the source to the flux of radiation, but there was no proof that this was a
valid assumption; no reliable calculation of the equations of motion that included radiation reaction had (in
their opinion) ever been carried out; many “derivations” of the quadrupole formula relied on the linearized
theory, which was clearly wrong for binary systems; since higher-order corrections had not been calculated, it
was impossible to know if the quadrupole formula was even a good approximation; even worse, higher-order
terms were known to be rife with divergent integrals.
There was considerable annoyance among holders of the “establishment” viewpoint when this paper ap-

peared, mainly because it was realized that its criticisms had considerable merit. As a result many research
groups embarked on a program to return to the fundamentals and to develop approximation schemes for
equations ofmotion and gravitational radiation thatwould not be subject to the flaws that so disturbed Ehlers
et al. Among the noteworthy outcomes of thismajor effort was the fully developed post-Minkowskian formal-
ism that forms the heart of this book. Toward the end of his life, Jürgen Ehlers, one of the great relativists of
his time, admitted to one of us (after some prodding, to be sure, and only up to a point!) that the justification
of the quadrupole formula was in much better shape than it was in 1976.
Experimentally, the situation was not at all controversial. By 1979, Taylor and his colleagues hadmeasured

the damping of the binary pulsar’s orbit, in agreement with the quadrupole formula to about 10 percent;
by 2005, the agreement was at the 0.2 percent level. The formula has also been beautifully confirmed in a
number of other binary-pulsar systems.
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11.2.2 Application: Binary system

As a first application of the quadrupole formula, we examine the gravitational waves emitted
by a binary system of orbiting bodies. We rely on the Newtonian description of the orbital
motion reviewed in Sec. 3.2.

Orbital motion and gravitational-wave field

The position of the first body, of mass m1, is r1(t) relative to the system’s barycenter, and
its velocity is v1(t); similarly, the position of the second body, of mass m2, is r2(t) and its
velocity is v2(t). In terms of the separation vector r := r12 = r1 − r2 we have that

r1 = m2

m
r , r2 = −m1

m
r , (11.63)

where m := m1 + m2 is the total mass of the system. We also have

v1 = m2

m
v , v2 = −m1

m
v , (11.64)

where v := v1 − v2 is the relative velocity vector. For later purposes we introduce the
notations

r := |r| , n := r/r , (11.65)

together with

η := m1m2

(m1 + m2)2
; (11.66)

this quantity is known as the symmetric mass ratio of the binary system.
Making the substitutions in the quadrupole-moment tensor of Eq. (11.61) reveals that

I jk = ηmr jrk , and Eq. (11.62) becomes 1
2 Ï jk = ηm[v jvk − (Gm/r )n j nk]. We then obtain

h jk = 4Gηm

c4 R

(
v jvk − Gm

r
n j nk

)
(11.67)

for the gravitational potentials created by a binary system. To proceed further we need
expressions for r and v.

To describe the orbital motion we introduce first an “orbit-adapted” coordinate system
(x, y, z) that possesses the following properties. First, the origin of the coordinates coincides
with the system’s barycenter. Second, the orbital plane coincides with the x-y plane, and
the z-axis points in the direction of the angular-momentum vector. And third, the x-axis
is aligned with the orbit’s major axis, while the y-axis is aligned with the minor axis. The
relative orbit is described by the Keplerian equations

r = p

1 + e cos φ
, φ̇ =

√
Gm

p3
(1 + e cos φ)2, (11.68)

in which φ is the angle from the x-axis (also known as the true anomaly). In addition, p is
the orbit’s semi-latus rectum, and e is the eccentricity; these orbital elements are constants
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of the motion that can be related to the system’s total energy and angular momentum. In
the orbit-adapted coordinates (x, y, z) we have that the unit vectors

n = [cos φ, sin φ, 0], λ = [− sin φ, cos φ, 0], (11.69)

form a basis in the orbital plane. In terms of these

r = r n, v = ṙ n + r φ̇ λ, (11.70)

and the description of the motion is complete. Taking into account Eqs. (11.68) and (11.70),
Eq. (11.67) becomes

h jk = 4η

c4 R

(Gm)2

p

[
−(1 + e cos φ − e2 sin2 φ)n j nk

+ e sin φ(1 + e cos φ)
(
n jλk + λ j nk

)+ (1 + e cos φ)2λ jλk
]
. (11.71)

The components of h jk in the orbit-adapted frame can then be obtained with the help of
Eq. (11.69).

Polarizations

In order to construct the gravitational-wave polarizations h+ and h×, it is helpful to intro-
duce, in addition to the original system (x, y, z), a “detector-adapted” coordinate system
(X, Y, Z ) that possesses the following properties. First, the origin of the coordinates coin-
cides with the origin of the system (x, y, z). Second, the Z -axis points in the direction of
the gravitational-wave detector, at which the polarizations are being measured. And third,
the X -Y plane is orthogonal to the Z -axis and coincides with the plane of the sky from
the detector’s point of view, and the X -axis is aligned with the line of nodes, the line at
which the orbital plane cuts the reference plane; by convention the X -axis points toward the
ascending node, the point at which the orbit cuts the plane from below. The construction
was detailed in Sec. 3.2, and we recall that in the original (x, y, z) coordinates, the new
coordinate directions are described by

eX = [cos ω, − sin ω, 0], (11.72a)

eY = [cos ι sin ω, cos ι cos ω, − sin ι], (11.72b)

eZ = [sin ι sin ω, sin ι cos ω, cos ι] = N. (11.72c)

When viewed in the detector-adapted frame (X, Y, Z ), the inclination angle ι measures
the inclination of the orbital plane with respect to the X -Y plane, while the longitude of
pericenter ω is the angle between the pericenter and the line of nodes, as measured in the
orbital plane. A third angle, the longitude of ascending node �, was also introduced back
in Sec. 3.2, but it is not needed here; we have set � = 0 by convention. The vectors n and
λ are given by

n = [cos(ω + φ), cos ι sin(ω + φ), sin ι sin(ω + φ)
]

(11.73)
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and

λ = [− sin(ω + φ), cos ι cos(ω + φ), sin ι cos(ω + φ)
]

(11.74)

when expressed in the detector-adapted coordinates (X, Y, Z ).
Because the gravitational waves propagate from the binary system to the detector along

the Z -axis, we may adopt eX and eY as a vectorial basis in the transverse subspace. And
having made this choice, the polarizations h+ and h× may be computed according to
Eq. (11.44); we have that

h+ = 1

2

(
e j

X ek
X − e j

Y ek
Y

)
h jk, (11.75a)

h× = 1

2

(
e j

X ek
Y + e j

Y ek
X

)
h jk . (11.75b)

Note that this choice of transverse basis differs only in notation from the description given
back in Eqs. (11.36), (11.37), and (11.38). In the old notation we have that N = eZ , ϑ = eY ,
and ϕ = −eX ; the old angles are related to the new ones by ϑ = ι and ϕ = π

2 − ω.
Inserting Eqs. (11.71), (11.73), (11.74) within Eq. (11.75) reveals that in the selected

transverse basis, the gravitational-wave polarizations are given by

h+ = h0 H+, h× = h0 H×, (11.76)

where

h0 = 2η

c4 R

(Gm)2

p
(11.77)

is the gravitational-wave amplitude, and

H+ = −(1 + cos2 ι)

[
cos(2φ + 2ω) + 5

4
e cos(φ + 2ω) + 1

4
e cos(3φ + 2ω)

+ 1

2
e2 cos 2ω

]
+ 1

2
e sin2 ι

(
cos φ + e

)
, (11.78a)

H× = −2 cos ι

[
sin(2φ + 2ω) + 5

4
e sin(φ + 2ω) + 1

4
e sin(3φ + 2ω)

+ 1

2
e2 sin 2ω

]
(11.78b)

are scale-free polarizations. Plots of H+ and H× are displayed in Fig. 11.2.

Circular motion

When e = 0 the orbit is circular, and φ increases linearly with time, at a uniform rate equal
to � :=

√
Gm/p3. In this case the polarizations simplify to

H+ = −(1 + cos2 ι) cos 2(�τ + ω), H× = −2 cos ι sin 2(�τ + ω), (11.79)

where τ := t − R/c is retarded time. We see that the waves oscillate at twice the orbital
frequency; this doubling of frequency is a consequence of the quadrupolar nature of the
wave.
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Fig. 11.2 The polarizations H+ and H× as functions of retarded time τ , in units of the orbital period P. The curves were
constructed from Eqs. (11.78), andφ is related to τ by integrating Eq. (11.68), which was done numerically. The curves
are displayed for an eccentricity e = 0.7, an inclination angle ι = 30◦, and a longitude of pericenterω = 45◦. We
see that most of the emission takes place near the pericenter, where the orbit is smallest and the motion fastest.

Numerical estimate

The gravitational-wave amplitude of Eq. (11.77) can also be expressed in terms of the
so-called chirp mass

M := η3/5m =
(

m3
1m3

2

m

)1/5

(11.80)

and the orbital period

P := 2π

√
a3

Gm
, (11.81)

where a := p/(1 − e2) is the orbit’s semi-major axis. The expression is

h0 = 2

c4 R
(GM)5/3

(
2π

P

)2/3 1

1 − e2
. (11.82)

We evaluate this for a binary system of black holes on a very tight orbit, moments before
they are about to plunge toward each other and merge into a single, final black hole.
We take m1 = 25 M� and m2 = 22 M�, so that M is approximately equal to 20 M�. We
imagine that the orbital period is of the order of 10 ms, and that the binary is situated at a
distance R = 100 Mpc, sufficiently far that the probability of occurrence of such an event
is reasonable. These numbers give rise to the estimate

h0 = 3.0 × 10−21

1 − e2

( M
20 M�

)5/3(10 ms

P

)2/3(100 Mpc

R

)
, (11.83)
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and this indicates that gravitational waves from realistic astrophysical events are exceedingly
weak. They are not, however, impossible to detect, and the search for such signals is on.

11.2.3 Application: Rotating neutron star

As a second application of the quadrupole formula we calculate the gravitational waves
emitted by a deformed body that rotates around one of its principal axes. We think of
this body as a rotating neutron star, but the calculation applies to any type of rigid body,
irrespective of its composition and internal structure.

General description

The simplest description of the body is given in a “body-adapted” frame (x ′, y′, z′) that
corotates with the body, and in which the quadrupole moment tensor I a′b′

is diagonal. The
coordinates are directed along the body’s principal axes, and we assume that I a′b′

does not
depend upon time t . We assume also that the body is rotating uniformly around the z′-axis,
with an angular velocity �. The transformation to the non-rotating frame (x, y, z) is given
by

x = x ′ cos �t − y′ sin �t, (11.84a)

y = x ′ sin �t + y′ cos �t, (11.84b)

z = z′. (11.84c)

The components of the quadrupole-moment tensor in the non-rotating frame are given by

I jk = ∂x j

∂xa′
∂xk

∂xb′ I a′b′
, (11.85)

and the transformation implies that I jk , unlike I a′b′
, depends on time.

It is customary to encode the three independent components of I a′b′
into the principal

moments of inertia

I1 :=
∫

ρ(x′)
(
y′2 + z′2) d3x ′ = I y′ y′ + I z′z′

, (11.86a)

I2 :=
∫

ρ(x′)
(
x ′2 + z′2) d3x ′ = I x ′x ′ + I z′z′

, (11.86b)

I3 :=
∫

ρ(x′)
(
x ′2 + y′2) d3x ′ = I x ′x ′ + I y′ y′

. (11.86c)

A body with I1 = I2 = I3 is spherically symmetric, and such a body would not emit gravi-
tational waves. A body with I1 = I2 	= I3 is symmetric about the axis of rotation, and such
a body also would not emit gravitational waves. To produce waves the body must be suffi-
ciently deformed, and a convenient measure of the deformation is the ellipticity parameter

ε := I1 − I2

I3
. (11.87)

As we shall see, the gravitational-wave field is proportional to (I1 − I2) = ε I3.
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The components of the quadrupole-moment tensor in the corotating frame are I x ′x ′ =
1
2 (I2 + I3 − I1), I y′ y′ = 1

2 (I3 + I1 − I2), and I z′z′ = 1
2 (I1 + I2 − I3). As a consequence of

Eq. (11.85), we find that they are given by

I xx = 1

2
I3 − 1

2

(
I1 − I2

)
cos 2�t, (11.88a)

I xy = −1

2

(
I1 − I2

)
sin 2�t, (11.88b)

I yy = 1

2
I3 + 1

2

(
I1 − I2

)
cos 2�t, (11.88c)

I zz = 1

2

(
I1 + I2 − I3

)
, (11.88d)

in the non-rotating frame; the components I xz and I yz vanish. The non-vanishing compo-
nents of Ï jk are

Ï xx = 2ε I3�
2 cos 2�t, (11.89a)

Ï xy = 2ε I3�
2 sin 2�t, (11.89b)

Ï yy = −2ε I3�
2 cos 2�t. (11.89c)

These expressions are ready to be inserted within Eq. (11.55) to obtain the gravitational-
wave field h jk

TT.
To extract the polarizations h+ and h× we adopt the same conventions as in Sec. 11.2.2.

We specify the direction of the gravitational-wave detector in the nonrotating frame (x, y, z)
by the polar angles (ι, ω), and use the vectors eX and eY of Eqs. (11.72) as a basis in the
transverse subspace. In this case, ι is the angle between the body’s rotation axis and the
direction to the detector, and ω is the angle, at t = 0, between the intersection of the body’s
equatorial plane with the plane of the sky and the direction of the body’s long axis. The
polarizations are defined as in Eqs. (11.75), and a quick calculation returns the expressions

h+ = 1

2
(1 + cos2 ι)h0 cos 2(�τ + ω), h× = cos ι h0 sin 2(�τ + ω), (11.90)

where τ := t − R/c is retarded time, and

h0 = 4G

c4 R
ε I3�

2 (11.91)

is the gravitational-wave amplitude.

Mountain on a spherical star

A simple model of a deformed neutron star features a mountain on the surface of an
otherwise spherical body. The body has a mass M and radius a, and for simplicity we
take its density to be uniform. The mountain has a mass m � M and is situated on the
surface at a position determined by the polar angles (θ, φ) in the body-adapted frame
(x ′, y′, z′); we model it as a point mass with a mass density ρ = mδ(x′ − ξ ), with ξ :=
[a sin θ cos φ, a sin θ sin φ, a cos θ ] giving the position of the mountain in the corotating
frame.
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It is easy to calculate that the body’s contribution to the moments of inertia is given by

I body
1 = I body

2 = I body
3 = 2

5
Ma2. (11.92)

We see that as expected, the body makes no contribution to the ellipticity ε. The mountain,
on the other hand, gives rise to

I mountain
1 − I mountain

2 = −ma2 sin2 θ cos 2φ, (11.93)

as well as a contribution to I3 that is smaller than I body
3 by a factor of order m/M � 1.

Neglecting this, we find that the model produces

ε = −5

2

m

M
sin2 θ cos 2φ, I3 = 2

5
Ma2. (11.94)

These expressions can then be inserted within Eq. (11.91) to calculate the gravitational-wave
amplitude.

Ellipsoid of uniform density

Another model of a deformed neutron star puts it in the shape of an ellipsoid of principal
axes a, b, and c. The surface is thus described by the equation

x ′2

a2
+ y′2

b2
+ z′2

a2
= 1, (11.95)

and we take the body to have a uniform mass density ρ. To carry out the integrations
over the star’s interior, it is useful to adopt the ellipsoidal coordinates (r, θ, φ) which are
related to the original Cartesian coordinates by x ′ = ar sin θ cos φ, y′ = br sin θ sin φ, and
z′ = cr cos θ . The radial coordinate r is dimensionless and ranges from 0 to 1; the polar
angles (θ, φ) have their usual ranges. The volume element is d3x ′ = abc r2 sin θ drdθdφ

in the ellipsoidal coordinates.
The mass of the body is given by M = (4π/3)ρabc, and a straightforward calculation

reveals that the moments of inertia are

I1 = 1

5
M(b2 + c2), (11.96a)

I2 = 1

5
M(a2 + c2), (11.96b)

I3 = 1

5
M(a2 + b2). (11.96c)

This produces an ellipticity given by

ε = b2 − a2

b2 + a2
. (11.97)

These expressions can be inserted within Eq. (11.91) to obtain the gravitational-wave
amplitude.
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Realistic neutron stars

The degree of deformation of a realistic neutron star is largely unknown, as are the
exact mechanisms that would be involved in supporting a long-lived ellipticity ε. The
most popular models feature either a genuine mountain that might reach deep below
the crust, a deformation driven and sustained by accretion of matter from a companion, or a
deformation created by a large toroidal magnetic field. These models suggest that ε < 10−6

for conventional models of neutron stars (which involve a solid crust resting on a liquid
core), but larger values might be possible for more exotic objects such as quark stars.

A typical neutron star has a mass M = 1.4M� and radius a = 12 km, and this gives rise
to a moment of inertia of the order of I3 = 2

5 Ma2 = 1.6 × 1038 kg m2. A fast pulsar rotates
with a period P = 10 ms and might be situated at a distance R = 1 kpc. Using ε = 10−6

as a typical value for the ellipticity, Eq. (11.91) gives rise to the estimate

h0 � 6.8 × 10−25

(
ε

10−6

)(
I3

1.6 × 1038 kg m2

)(
10 ms

P

)2(1 kpc

R

)
. (11.98)

Gravitational waves produced by rotating neutron stars are exceedingly small, but coherent
integration of a signal of known frequency over a very long time builds up a signal-to-
noise ratio that may exceed the detection threshold of a gravitational-wave detector. (The
frequency can be measured in radio waves if the rotating neutron star is a known pulsar.)
The search is on!

11.2.4 Application: Tidally deformed star

As a third and final application of the quadrupole formula we calculate the gravitational
waves emitted during a tidal interaction between a fluid body and a nearby object. For
concreteness and simplicity we take the body to be non-rotating and to have a uniform
density, and we place the external object on a parabolic trajectory. We work in the moving
frame of the body, and ignore the gravitational waves produced by the center-of-mass
motion (these were considered previously, in the case of elliptical and circular motion);
as we shall see, the tidal gravitational waves are typically much weaker than the waves
produced by the orbital motion. The body’s tidal dynamics was studied in some detail back
in Sec. 2.5.3, and we begin our discussion with a recollection of the main results.

Tidal dynamics

The body is assumed to be spherical and in hydrostatic equilibrium in the absence of a tidal
interaction; in its unperturbed state it has a mass M , a radius a, and a uniform density ρ0.
The body is perturbed by an external object of mass M ′ at a position x j = rn j relative
to the body’s center-of-mass. This object produces a tidal potential Utidal = − 1

2E jk(t) x j xk

inside the body, with

E jk = G M ′

r3

(
δ jk − 3n j nk

)
, (11.99)



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-11 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:7

563 11.2 The quadrupole formula

denoting the tidal quadrupole moment. As we saw back in Sec. 2.5.3, the body’s deformation
in response to the perturbation is measured by its mass quadrupole moment I 〈 jk〉(t), which,
according to Eq. (2.289), is given by

I 〈 jk〉 = −2

5
Ma2F jk, (11.100)

where

F jk(t) := 1

ω2

∫ t

−∞
E jk(t ′) sin ω2(t − t ′) dt ′ (11.101)

is the body’s response function, with

ω2 :=
√

4

5

G M

a3
(11.102)

denoting the body’s f -mode frequency for a quadrupole deformation.

Gravitational waves

Differentiation of Eq. (11.100) gives

Ï 〈 jk〉 = −2

5
Ma2G jk, (11.103)

in which

G jk(t) := 1

ω2

∫ t

−∞
Ë jk(t ′) sin ω2(t − t ′) dt ′ (11.104)

is the response function associated with Ë jk instead of E jk ; two integrations by parts were
required to arrive at this result. Substituting this into the quadrupole formula of Eq. (11.55),
we find that the gravitational-wave field is given by

h jk
TT(t, x) = −4

5

G Ma2

c4 R
G jk

TT(τ ), (11.105)

in which R := |x| is the distance to the detector and τ := t − R/c is retarded time.
We can use Eq. (11.105) to estimate the magnitude of the gravitational waves produced

by a tidal interaction. For an external object of mass M ′ at a distance r , the tidal moment
scales as E jk ∼ G M ′/r3, and it changes over a time scale comparable to �−1

c , in which
�c :=

√
G(M + M ′)/r3 is a characteristic frequency of the orbital motion. This yields

Ë jk ∼ �2
cE jk , and substitution within Eq. (11.104) returns the estimate G jk ∼ ω−2

2 Ë jk ∼
(�c/ω2)2E jk . Inserting this within Eq. (11.105), we arrive at

h ∼ G2(M + M ′)M ′

c4 R

a5

r6
. (11.106)

It is useful to compare this with Eq. (11.77), which provides an estimate for the gravitational
waves produced by the orbital motion. According to this, we find that the ratio of wave
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amplitudes is estimated as

htidal

horbital
∼ M ′

M + M ′

(
a

r

)5

. (11.107)

The five powers of the ratio of length scales imply that when r is even modestly larger
than a, the waves emitted during the tidal interaction are very weak compared with the
waves produced by the orbital motion. The waves can be comparable only for very close
encounters with r ∼ a.

Parabolic encounter

To give concreteness to these considerations, we examine the tidal interaction that results
when the external object is placed on a parabolic trajectory described by setting e = 1 in
Eq. (11.68). The motion of the external object is parameterized by p := 2rmin, in which
rmin is the distance of closest approach. It can also be parameterized by the frequency

� :=
√

G(M + M ′)
p3

, (11.108)

which is such that the angular velocity φ̇max at closest approach is equal to φ̇max = 4�. It is
useful to note that (

ω2

�

)2

= 32

5

M

M + M ′

(
rmin

a

)3

. (11.109)

It is straightforward to differentiate Eq. (11.99) twice with respect to time and to insert
the result within Eq. (11.104), which must then be evaluated numerically. We extract
the gravitational-wave polarizations h+ and h× from Eq. (11.105) by adopting the same
conventions as in Sec. 11.2.2. We obtain the expressions

h+,× = −h0 H+,×, (11.110)

where

h0 = 3
G2(M + M ′)M ′

c4 R

a5

p6
(11.111)

is the gravitational-wave amplitude, and the scale-free polarizations H+,× are extracted
from H jk := 1

3 [(M + M ′)/M ′](ω2/�2)2G jk . These are plotted in Fig. 11.3 for selected
values of ω2/�, and the caption describes their main properties.

11.3 Beyond the quadrupole formula: Waves at 1.5pn order

We now embark on a long journey to improve our description of gravitational waves by
going beyond the quadrupole formula of Eq. (11.55). This, we recall, is the leading term in
an expansion of the gravitational-wave field in powers of vc/c, where vc is a characteristic
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Fig. 11.3 The polarization H+ as a function of the dimensionless retarded time�τ , for selected values of the ratioω2/�. The
curves are displayed for an inclination angle ι = 30◦, and a longitude of pericenterω = 45◦. We see that most of
the emission takes place at and after the moment of closest approach (τ = 0). Whenω2 is comparable to�, the
parabolic encounter ignites a fluid mode of frequencyω2 which produces a gravitational wave of frequencyω2. The
effect is maximized when the resonant condition 2φ̇max = 8� � ω2 is met, and the wave is heavily suppressed
whenω2 � �. In a more realistic model of the tidal interaction, the wave would eventually be damped by
dissipative processes taking place inside the body; in our simplified model the fluid mode goes on forever.

velocity of the source. We shall call this leading term the Newtonian contribution to the
gravitational-wave field, and in this section we will compute corrections of order (vc/c),
(vc/c)2, and (vc/c)3 to the quadrupole formula; in other words, we shall calculate h jk

TT

through 1.5pn order in a post-Newtonian expansion.
We note that the post-Newtonian counting described here differs from the convention

adopted back in Sec. 7.4, see Box 7.7. In the original convention the quadrupole terms in
the gravitational potentials were given a 1pn label instead of the 0pn label assigned here.
The reason for this can be gathered from the following expression for h00,

h00 = 4G

c2 R

[
M + 1

2c2
Ï jk N j Nk + · · ·

]
, (11.112)

which holds in the far-away wave zone. The leading term in this expression is the mass
term, and in the old convention this was given a sensible 0pn label. The quadrupole term
is smaller than this by a factor of order (vc/c)2, and this was given a 1pn label. Our new
convention differs from this because our focus is now different: We are interested only
in the spatial components of the gravitational potentials, and these do not contain a mass
term. And since the leading term involves the Newtonian quadrupole moment I jk , it is
convenient to reset the post-Newtonian counter and call the right-hand side of Eq. (11.55)
the Newtonian contribution to h jk

TT. Additional terms are labeled 0.5pn, 1pn, and 1.5pn, and
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so on. The new convention has the merit of keeping the post-Newtonian orders of h jk in
step with those of the source, and those of the multipole moments.

For concreteness the calculations will be specialized to a system of N bodies that we
assume to be well separated; these are identified by a label A, and body A has a total
mass-energy MA, a position r A(t), and moves with a velocity vA(t). For simplicity we shall
take the bodies to be point masses, and rely on the description given in Sec. 9.6.

11.3.1 Requirements and strategy

Our purpose in this first subsection is to identify the tasks that lie ahead: we map the
terrain of our journey and plan the calculational strategy. The computations will be long
and tedious, and they will occupy us in the remaining nine subsections. The reader who
does not wish to follow the details can skip ahead to Box 11.4 and find a summary of our
results.

We wish to integrate the wave equation

�h jk = −16πG

c4
τ jk (11.113)

for the spatial components of the gravitational potentials, and evaluate the solution in
the far-away wave zone. Here, τ jk = (−g)(T jk + t jk

LL + t jk
H ) are the spatial components of

the effective energy-momentum pseudotensor first introduced in Sec. 6.2.1, decomposed
into a material contribution T jk , the Landau–Lifshitz pseudotensor t jk

LL, and the harmonic-
gauge contribution t jk

H . We wish to integrate the wave equation to a degree of accuracy
that surpasses what was achieved in Chapter 7; this amounts to constructing a third post-
Minkowskian approximation to the exact gravitational potentials. And we wish to extract
from h jk the transverse-tracefree pieces that truly represent the gravitational-wave field.

Techniques to integrate Eq. (11.113) were developed in Chapter 6 and summarized in
Box 6.7. In Sec. 6.3 we learned to express the solution as an integral over the past light
cone of the field point (t, x), which is decomposed as

h jk = h jk
N + h jk

W . (11.114)

The near-zone piece h jk
N comes from the portion of the light cone that lies within the near

zone (where |x′| < R), and the wave-zone piece h jk
W comes from the portion that lies in

the wave zone (where |x′| > R); the boundary between the zones is arbitrarily positioned
at the radius |x′| = R ∼ λc. In Sec. 6.3.4 we derived an expression for h jk

N that is valid in
the far-away wave zone; this is given by Eq. (6.91), which we copy as

h jk
N = 4G

c4 R

∞∑
�=0

1

�!c�
NL

(
d

dτ

)� ∫
M

τ jk(τ, x′)x ′L d3x ′, (11.115)

where N := x/R is a unit radial vector, L a multi-index that contains a number � of
individual indices, NL := N j1 N j2 · · · N j� , x ′L := x ′ j1 x ′ j2 · · · x ′ j� , and where the domain of
integration M is defined by |x′| < R.
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We consider h jk
W at a later stage. For the time being we focus our attention on h jk

N , and
write Eq. (11.115) in a form that showcases the first few terms:

h jk
N = 4G

c4 R

{∫
M

τ jk d3x ′ + 1

c
Na

d

dτ

∫
M

τ jk x ′a d3x ′

+ 1

2c2
Na Nb

d2

dτ 2

∫
M

τ jk x ′a x ′b d3x ′

+ 1

6c3
Na Nb Nc

d3

dτ 3

∫
M

τ jk x ′a x ′bx ′c d3x ′ + [� ≥ 4]

}
, (11.116)

where [� ≥ 4] stands for the remaining terms in the sum over �. In keeping with our previous
discussion, we say that the first term on the right-hand side of Eq. (11.116) makes a 0pn

contribution to h jk (together with a correction of 1pn order), the second term makes a
0.5pn contribution (together with a correction of 1.5pn order), the third term makes a 1pn

contribution, and the fourth term a 1.5pn contribution; the [� ≥ 4] terms contribute at 2pn

and higher orders, and we shall not keep them in the calculation.
To help with the first two integrals we invoke the conservation identities of Eqs. (7.14),

which we copy here as

τ jk = 1

2c2

∂2

∂τ 2

(
τ 00x j xk

)+ 1

2
∂p

(
τ j pxk + τ kpx j − ∂qτ

pq x j xk
)
, (11.117a)

τ jk xa = 1

2c

∂

∂τ

(
τ 0 j xk xa + τ 0k x j xa − τ 0a x j xk

)
+ 1

2
∂p

(
τ j pxk xa + τ kpx j xa − τ apx j xk

)
. (11.117b)

Making the substitutions and introducing some notation to simplify the writing, we find
that h jk

N can be expressed as

h jk
N = 2G

c4 R

∂2

∂τ 2

{
Q jk + Q jka Na + Q jkab Na Nb + 1

3
Q jkabc Na Nb Nc + [� ≥ 4]

}

+ 2G

c4 R

{
P jk + P jka Na

}
, (11.118)

in which the radiative multipole moments are defined by

Q jk :=
∫

M
c−2τ 00x ′ j x ′k d3x ′, (11.119a)

Q jka := 1

c

∫
M

(
c−1τ 0 j x ′k x ′a + c−1τ 0k x ′ j x ′a − c−1τ 0a x ′ j x ′k) d3x ′, (11.119b)

Q jkab := 1

c2

∫
M

τ jk x ′a x ′b d3x ′, (11.119c)

Q jkabc := 1

c3

d

dτ

∫
M

τ jk x ′a x ′bx ′c d3x ′, (11.119d)
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and where

P jk :=
∮

∂M

(
τ j px ′k + τ kpx ′ j − ∂ ′

qτ
pq x ′ j x ′k) d Sp, (11.120a)

P jka := 1

c

d

dτ

∮
∂M

(
τ j px ′k x ′a + τ kpx ′ j x ′a − τ apx ′ j x ′k) d Sp, (11.120b)

are surface integrals that also contribute to h jk
N . In the radiative moments, τ jk is expressed

as a function of τ and x′. The same is true within the surface integrals, except for the
fact that x ′ j is now equal to RN j ; the surface element on ∂M is d Sj := R2 N j d�. The
multipole moments and surface integrals are functions of τ only.

In the following subsections we will endeavor to calculate the quantities that appear
within Eq. (11.118). As was stated previously, we wish to compute h jk accurately through
1.5pn order. In a schematic notation, what we want is

h jk = G

c4 R

(
c0 + c−1 + c−2 + c−3 + · · ·

)
, (11.121)

in which the leading, c0 term is the 0pn contribution, the correction of order c−1 a 0.5pn

term, and so on. To achieve this we need to calculate c−2τ 00 = c0 + c−2 + · · · to obtain
Q jk = c0 + c−2 + · · · , c−1τ 0 j = c0 + c−2 + · · · to obtain Q jka = c−1 + c−3 + · · · , and
τ jk = c0 + · · · to obtain Q jkab = c−2 + · · · and Q jkabc = c−3 + · · · . And on ∂M we
need to calculate τ jk = c0 + c−2 + · · · to obtain P jk = c0 + c−2 + · · · and P jka = c−1 +
c−3 + · · · All in all, this will give us the 1.5pn accuracy that we demand for h jk .

Our considerations have so far excluded h jk
W . We postpone a detailed discussion until

Sec. 11.3.7, where we compute this contribution to the gravitational potentials. For the time
being it suffices to say that h jk

W contributes at 1.5pn order. It is therefore needed to achieve
the required level of accuracy for h jk .

The calculations that follow are lengthy. They are simplified considerably by the obser-
vation that ultimately we wish to extract the transverse-tracefree part of h jk . It is therefore
superfluous to calculate any term that will not survive the TT projection introduced in
Sec. 11.1.7. For example, a term in h jk that is known to be proportional to δ jk , or to
N j , will not survive the projection, and does not need to be computed. There are many
such terms, and ignoring them is a substantial time saver. As another example, terms in
Q jkab that are proportional to δ ja , or δka , or δ jb, or δkb (but not δab!), can all be ignored
because they produce contributions to h jk that are proportional to N j or N k , and these will
not survive the TT projection. To indicate equality modulo terms that do not survive the
transverse-tracefree projection, we introduce the notation

tt=, so that

A jk tt= B jk (11.122)

whenever

(tt) jk
pq Apq = (tt) jk

pq B pq . (11.123)

In other words, A jk and B jk differ by a tensor C jk that contains no TT part: (tt)ab
pqC pq = 0.

An additional source of simplification – an important one – was exploited previously in
Sec. 7.4, with a justification provided in Sec. 6.3.3: we are free to ignore all R-dependent
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terms in h jk
N , and all R-dependent terms in h jk

W , because any dependence on the arbitrary
cutoff parameterR (the radius of the artificial boundary between the near zone and the wave
zone) is guaranteed to cancel out when h jk

N and h jk
W are added together to form the complete

potentials h jk . The freedom to discard all R-dependent terms is another substantial time
saver.

11.3.2 Integration techniques for field integrals

In the course of our calculations we shall encounter a number of field integrals, a represen-
tative example of which is

E jk := 1

4π

∫
M

U∂ jU xk d3x, (11.124)

where M is the domain of integration |x| < R, and where

U :=
∑

A

G MA

|x − r A| (11.125)

is the Newtonian potential for a system of point masses. In this subsection we introduce
techniques to evaluate such integrals. We will examine the specific case of Eq. (11.124), but
the techniques are quite general, and they apply just as well to many similar field integrals.

Explicit form of E jk ; change of integration variables

After evaluating ∂ jU we find that the field integral can be expressed in the more explicit
form

E jk = −
∑

A

G2 M2
A E jk

A −
∑

A

∑
B 	=A

G2 MA MB E jk
AB, (11.126)

where

E jk
A := 1

4π

∫
M

(x − rA) j xk

|x − r A|4 d3x, (11.127a)

E jk
AB := 1

4π

∫
M

(x − rB) j xk

|x − r A||x − r B |3 d3x . (11.127b)

To evaluate the first integral we make the substitution x = r A + y and integrate with respect
to the new variables y. This leads to

E jk
A = 1

4π

∫
M

y j yk

y4
d3 y + rk

A

4π

∫
M

y j

y4
d3 y, (11.128)

where y := | y|. To evaluate the second integral we use instead x = r B + y and integrate
with respect to y. This leads to

E jk
AB = 1

4π

∫
M

1

| y − r AB |
y j yk

y3
d3 y + rk

B

4π

∫
M

1

| y − r AB |
y j

y3
d3 y, (11.129)

where r AB := r A − r B .
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Translation of the domain of integration

Each one of the integrals that appears in Eqs. (11.128) and (11.129) is of the form∫
M

f ( y) d3 y,

where f is a function of the vector y, which is related to the original variables x by a
translation x = y + r , with r independent of x. The domain of integration M is defined
by |x| < R, or | y + r| < R, and it will be convenient to replace it by the simpler domain
My defined by y := | y| < R.

To effect this replacement we note that the cutoff radius R can be assumed to be large
compared with r := |r|. (Recall the discussion of Sec. 6.3.3, in which R is chosen to be
comparable to λc, the characteristic wavelength of the gravitational radiation. Recall also
the discussion of Sec. 6.3.2, in which λc is shown to be large compared with both |r A| and
|r AB |, because in a slow-motion situation the matter distribution is always situated deep
within the near zone. Conclude from these observations that r/R � 1, as claimed.) The
condition that defines M is y2 + 2r · y + r2 < R2, and this can be expressed more simply
as

y < R − r cos γ + O(r2/R), (11.130)

when r/R � 1; here γ is the angle between the vectors y and r .
Switching to spherical polar coordinates (y, θ, φ) associated with the vector y, the

integral is∫
M

f ( y) d3 y =
∫

d�

∫ R−r cos γ+···

0
f (y, θ, φ) y2dy

=
∫

d�

∫ R

0
f (y, θ, φ) y2dy +

∫
d�

∫ R−r cos γ+···

R
f (y, θ, φ) y2dy,

(11.131)

where d� = sin θ dθdφ is an element of solid angle. In the second line, the first integral is
over the domain My , while the second integral is∫

(−r cos γ )R2 f (R, θ, φ) d� = −
∮

∂My

f ( y) r · d S (11.132)

to first order in r/R; here, d S j := R2 N j d�, with N := y/y, is the surface element on
∂My , the boundary of My described by the equation y = R.

We have obtained the useful approximation∫
M

f ( y) d3 y =
∫

My

f ( y) d3 y −
∮

∂My

f ( y) r · d S + · · · , (11.133)

in which the domain of integration My is defined by y := | y| < R, and ∂My is its boundary
at y = R. It is clear that the surface integral in Eq. (11.133) is smaller than the volume
integral by a factor of order r/R � 1; the neglected terms are smaller still.
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Evaluation of E jk
A

We now return to the field integral of Eq. (11.128). We begin by working on the first term,
which we copy as

1

4π

∫
M

y j yk

y4
d3 y.

Inserting this within Eq. (11.133), we find that the volume integral is

1

4π

∫
My

y j yk

y4
d3 y = 1

4π

∫
My

N j N k dyd� = 〈〈N j N k〉〉
∫ R

0
dy = 1

3
δ jkR, (11.134)

in which 〈〈 · · · 〉〉 := (4π )−1
∫

(· · · ) d� denotes an angular average; the identity
〈〈N j N k〉〉 = 1

3δ jk was established back in Sec. 1.5.3, along with other similar results. This
contribution to E jk

A can be discarded because it is proportional to R, and it was agreed
near the end of Sec. 11.3.1 that all R-dependent terms can indeed be ignored. With the
understanding that r stands for r A, the surface integral is

− 1

4π

∮
∂My

y j yk

y4
r · d S = − 1

4π

∫
N j N krp N p d� = −rp〈〈N j N k N p〉〉 = 0. (11.135)

The neglected terms in Eq. (11.133) are of order R−1 and smaller, and because they depend
on R, they can be freely discarded. We conclude that the first term in Eq. (11.128) evaluates
to zero.

We next set to work on the second term, which involves the integral

1

4π

∫
M

y j

y4
d3 y.

Inserting this within Eq. (11.133), we find that the volume integral is

1

4π

∫
My

y j

y4
d3 y = 〈〈N j 〉〉

∫ R

0

dy

y
= 0. (11.136)

It is a fortunate outcome that the logarithmic divergence at y = 0 (which occurs because
the matter distribution is modeled as a collection of point masses) requires no explicit
regularization, because the angular integration vanishes identically. The surface integral is

− 1

4π

∮
My

y j

y4
r · d S = −rp

R 〈〈N j N p〉〉 = −1

3

r j

R , (11.137)

in which r stands for r A. The additional terms in Eq. (11.133) are smaller by additional
powers of r/R � 1, and because they all depend on R, they can be freely discarded. We
conclude that the second term in Eq. (11.128) evaluates to zero.

We have arrived at

E jk
A = 0, (11.138)

modulo R-dependent terms that can be freely discarded.
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Evaluation of E jk
AB

To evaluate the right-hand side of Eq. (11.129) we continue to use Eq. (11.133) to express
an integral over the domain M in terms of a volume integral over My and a surface integral
over ∂My . We also make use of the addition theorem for spherical harmonics,

1

| y − r AB | =
∞∑

�=0

�∑
m=−�

4π

2� + 1

r �
<

r �+1
>

Y ∗
�m(nAB)Y �m(N), (11.139)

in which r< := min(y, rAB), r> = max(y, rAB), N := y/y, and nAB := r AB/rAB . We insert
Eq. (11.139) within the first integral on the right-hand side of Eq. (11.129). Recalling
Eq. (11.133), we approximate this by

1

4π

∫
My

1

| y − r AB |
y j yk

y3
d3 y

= 1

4π

∫
My

1

| y − r AB | N j N k y dyd�

=
∑

�

1

2� + 1

∫ R

0
dy y

r �
<

r �+1
>

∑
m

Y ∗
�m(nAB)

∫
Y �m(N)N j N k d�. (11.140)

To evaluate the angular integral we express N j N k as

N j N k = N 〈 jk〉 + 1

3
δ jk, (11.141)

where N 〈 jk〉 is an STF tensor of the sort introduced back in Sec. 1.5.3, and we invoke the
identity of Eq. (1.171),

�∑
m=−�

Y ∗
�m(nAB)

∫
Y�m(N)N 〈L ′〉 d� = δ��′ n〈L〉

AB . (11.142)

This produces

1

4π

∫
My

1

| y − r AB |
y j yk

y3
d3 y = 1

5
K (2, 1) n〈 jk〉

AB + 1

3
K (0, 1) δ jk, (11.143)

where the radial integrals

K (�, n) :=
∫ R

0
yn r �

<

r �+1
>

dy (11.144)

are evaluated below. This expression must be corrected by the surface integral of
Eq. (11.133). We have

1

4π

∮
∂My

1

| y − r AB |
y j yk

y3
r · d S = Rrp

4π

∫
1

| y − r AB | N j N k N p d�, (11.145)

in which r stands for r B . Because the leading term of | y − r AB |−1 in an expansion in
powers of rAB/R � 1 is equal to R−1, the surface integral potentially gives rise to an R-
independent contribution to E jk

AB . But this leading term is proportional to 〈〈N j N k N p〉〉 = 0,
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and we find that the surface integral does not actually contribute. At this stage we have
obtained

1

4π

∫
M

1

| y − r AB |
y j yk

y3
d3 y = 1

5
K (2, 1) n〈 jk〉

AB + 1

3
K (0, 1) δ jk (11.146)

for the first integral on the right-hand side of Eq. (11.129).
We next set to work on the second integral, and we begin by evaluating

1

4π

∫
My

1

| y − r AB |
y j

y3
d3 y

= 1

4π

∫
My

1

| y − r AB | N j dyd�

=
∑

�

1

2� + 1

∫ R

0
dy

r �
<

r �+1
>

∑
m

Y ∗
�m(nAB)

∫
Y �m(N)N j d�. (11.147)

Using Eqs. (11.142) and (11.144), this is

1

4π

∫
My

1

| y − r AB |
y j

y3
d3 y = 1

3
K (1, 0) n j

AB . (11.148)

This must be corrected by the surface integral of Eq. (11.133), and it is easy to show that in
this case also, the result scales as R−1 and does not contribute. We have therefore obtained
1
3 K (1, 0)n j

AB for the second integral on the right-hand side of Eq. (11.129).
Collecting results, we find that

E jk
AB = 1

5
K (2, 1) n〈 jk〉

AB + 1

3
K (0, 1) δ jk + 1

3
K (1, 0) n j

ABrk
B . (11.149)

Radial integrals

To complete the computation we must now evaluate the radial integrals defined by
Eq. (11.144),

K (�, n) :=
∫ R

0
yn r �

<

r �+1
>

dy, (11.150)

in which r< := min(y, r ) and r> = max(y, r ), with r standing for rAB .
Excluding the case n = �, which never occurs in practice, we have

K (�, n) = 1

r �+1

∫ r

0
y�+n dy + r �

∫ R

r
yn−�−1 dy

= rn

� + n + 1
− rn

n − �

[
1 − (r/R)�−n

]
. (11.151)

We discard the last term because it depends on the cutoff radius R, and we conclude that

K (�, n) = 2� + 1

(� − n)(� + n + 1)
|r AB |n, (� 	= n). (11.152)

In particular, K (2, 1) = 5
4rAB , K (0, 1) = − 1

2rAB , and K (1, 0) = 3
2 .
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Final answer

Substituting Eq. (11.152) into Eq. (11.149), we find that E jk
AB becomes

E jk
AB = 1

4
rABn〈 jk〉

AB − 1

6
rABδ jk + 1

2
n j

ABrk
B . (11.153)

This, together with Eq. (11.138) for E jk
A , can now be inserted within Eq. (11.126). We

arrive at

E jk = −
∑

A

∑
B 	=A

G2 MA MB

(
1

4
rABn〈 jk〉

AB − 1

6
rABδ jk + 1

2
n j

ABrk
B

)
,

and this can also be expressed as

E jk = −
∑

A

∑
B 	=A

G2 MA MB

(
1

4
rABn〈 jk〉

AB − 1

6
rABδ jk − 1

2
n j

ABrk
A

)

if we interchange the identities of bodies A and B and recall that nB A = −nAB . When we
add these expressions and divide by two, we obtain the symmetrized form

E jk = −
∑

A

∑
B 	=A

G2 MA MB

(
1

4
rABn〈 jk〉

AB − 1

6
rABδ jk − 1

4
rABn j

ABnk
AB

)
.

This becomes

E jk = 1

4
δ jk
∑

A

∑
B 	=A

G2 MA MB |r A − r B | (11.154)

after simplification, and this is our final answer.

Box 11.3 Field integrals

Let us retrace the main steps that led us from the definition

E jk = 1

4π

∫
M

U∂ jU xk d3x,

to its evaluation

Eab = 1

4
δ jk
∑

A

∑
B 	=A

G2 MA MB |r A − r B |.

These steps will allow us to evaluate many similar field integrals.
After inserting the Newtonian potential and its derivative within the integral, we change the variables of

integration from x to y = x − r , in which r stands for either r A or r B , depending on the context. We
also translate the domain of integration fromM (defined by |x| < R) toMy (defined by | y| < R),
and we make use of the identity∫

M
f ( y) d3 y =

∫
My

f ( y) d3 y −
∮

∂My

f ( y) r · d S + · · · , (1)
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in which the surface integral is smaller than the volume integral by a factor of order |r|/R � 1 (and the
dotted terms are smaller still).
Next we invoke the addition theorem for spherical harmonics,

1

| y − r AB | =
∞∑

�=0

�∑
m=−�

4π

2� + 1

r �
<

r �+1
>

Y ∗
�m(nAB)Y �m(N), (2)

in which r AB = r A − r B , r< := min(y, rAB), r> = max(y, rAB), N := y/y, and nAB :=
r AB/rAB . After expressing all factors such as N L in terms of STF tensors, the angular integrations are
carried out with the help of the identity

�∑
m=−�

Y ∗
�m(nAB)

∫
Y�m(N)N 〈L ′〉 d� = δ��′ n〈L〉

AB . (3)

We rely also on the following listing of angular averages:

〈〈N j 〉〉 = 0, (4a)

〈〈N j N k〉〉 = 1

3
δ jk, (4b)

〈〈N j N k N p〉〉 = 0, (4c)

〈〈N j N k N p N q〉〉 = 1

15

(
δ jkδ pq + δ j pδkq + δ jqδkp

)
, (4d)

where 〈〈 · · · 〉〉 := (4π)−1
∫

(· · · ) d�; these results were obtained back in Sec. 1.5.3.
This leaves us with a number of radial integrations to work out, and these are given by

K (�, n) :=
∫ R

0
yn r �

<

r �+1
>

dy = 2� + 1

(� − n)(� + n + 1)
|r AB |n, (5)

provided that � 	= n.
And at last, after simplification, we obtain our final expression for the field integral. All the while we are

justified to throw away any term that contains an explicit dependence on the arbitrary cutoff radiusR.

11.3.3 Radiative quadrupole moment

We launch our calculation of the gravitational-wave field with a computation of Q jk , the
radiative quadrupole moment. According to Eq. (11.119), this is defined by

Q jk(τ ) := 1

c2

∫
M

τ 00(τ, x)x j xk d3x, (11.155)

in which τ := t − R/c is retarded time, and where we suppress the primes on the integration
variables to simplify the notation. (It should be kept in mind that R is the distance to the
field point, which is distinct from the source point now identified by the vector x.) We show
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below that the radiative quadrupole moment is given by

Q jk tt=
∑

A

MA

(
1 + 1

2

v2
A

c2
− 1

2

�U�A

c2

)
r j

Ark
A + O(c−4), (11.156)

where

�U�A :=
∑
B 	=A

G MB

rAB
(11.157)

is the partie finie of the Newtonian potential U (x) evaluated at x = r A. The expression
of Eq. (11.156) leaves out terms proportional to δ jk that would not survive the action of
the transverse-tracefree projector (tt) jk

pq , as well as R-dependent terms that can be freely
discarded. It is understood that the position vectors r A, and the velocity vectors vA, are
evaluated at the retarded time τ .

According to the discussion of Sec. 11.3.1, to calculate Q jk to the required degree of
accuracy, we need an expression for c−2τ 00 that includes terms of order c0 (Newtonian, or
0pn) and terms of order c−2 (1pn). Such an expression was obtained back in Sec. 7.3.1 in
the case of a matter distribution that consists of a perfect fluid. According to Eq. (7.54a),
we have that

c−2τ 00 = ρ∗
[

1 + 1

c2

(
1

2
v2 + 3U + �

)]
− 7

8πGc2
∂pU∂ pU + O(c−4) . (11.158)

For a system of point particles we have that ρ∗ =∑A MAδ(x − r A) and � = 0, and the
Newtonian potential reduces to U =∑B G MB |x − r B |−1.

This expression for c−2τ 00 is ill-defined for point particles, because the term B = A
in U gives rise to a term

∑
A G M2

A|x − r A|−1δ(x − r A) in ρ∗U . This is not defined as a
distribution, and such a term gives rise to an ambiguity in the evaluation of the radiative
quadrupole moment. We have, however, encountered a similar situation before, and learned
how to deal with it. Indeed, suitable regularization methods were developed back in Sec. 9.6,
where it was shown that ambiguous integrals can be made well-defined by adopting the
regularization prescription

δ(x − r A)

|x − r A| ≡ 0. (11.159)

The rule removes the offending term in ρ∗U , and the piece of the Newtonian potential that
survives multiplication by δ(x − r A) is the partie finie displayed in Eq. (11.157). With this
prescription, our expression for the effective mass density becomes

c−2τ 00 =
∑

A

MA

(
1 + v2

A

2c2
+ 3�U�A

c2

)
δ
(
x − r A

)− 14

16πGc2
∂pU∂ pU + O(c−4).

(11.160)
The radiative quadrupole moment can be decomposed as

Q jk = Q jk[M] + Q jk[F] + O(c−4). (11.161)

It contains a matter contribution that comes from the δ-functions in τ 00, and a field con-
tribution that comes from the term involving ∂pU∂ pU . The matter contribution can be
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calculated at once:

Q jk[M] =
∑

A

MA

(
1 + v2

A

2c2
+ 3�U�A

c2

)
r j

Ark
A. (11.162)

The field contribution is

Q jk[F] = − 14

16πGc2

∫
M

∂pU∂ pU x j xk d3x, (11.163)

and its computation requires a lot more work.
To evaluate the field integral of Eq. (11.163) we first express the integrand in the equiv-

alent form

∂pU∂ pU x j xk = ∂p

(
U∂ pU x j xk

)− 1

2
∂ j
(
U 2xk

)− 1

2
∂k
(
U 2x j

)
+ U 2δ jk − U (∇2U )x j xk, (11.164)

which allows us to integrate by parts. We may discard the term U 2δ jk on the grounds that
it will not survive the TT projection introduced in Sec. 11.1.7. We may also replace ∇2U
by −4πG

∑
A MAδ(x − r A), and write∫
M

∂pU∂ pU x j xk d3x
tt=
∮

∂M
U∂ pU x j xk d Sp −

∮
∂M

U 2x ( j d Sk)

+ 4πG
∑

A

MA�U�Ar j
Ark

A, (11.165)

where the notation
tt= was introduced near the end of Sec. 11.3.1, and where d S j =

R2 N j d� is the surface element on ∂M . Note that we have once more made use of
the regularization prescription of Eq. (11.159). Making the substitution, we obtain

Q jk[F]
tt= − 7

2Gc2

(
R4〈〈U∂pU N j N k N p〉〉 − R3〈〈U 2 N j N k〉〉

)
− 7

2c2

∑
A

MA�U�Ar j
Ark

A, (11.166)

in which the angular brackets denote an average over the unit two-sphere.
We must now evaluate the surface integrals, on which x is set equal to RN . Recalling

that R is large compared with r A (refer to Sec. 11.3.2), it is appropriate to expand U in
inverse powers of r := |x| before we insert it within the integrals. We have

U = Gm

r
+ 1

2
G I jk∂ jkr−1 + O(r−3), (11.167)

where m :=∑A MA is the total mass, and I jk :=∑A MAr j
Ark

A is the Newtonian quadrupole
moment of the mass distribution. It is important to note that the Newtonian dipole moment,
I j :=∑A MAr j

A, has been set equal to zero. This is allowed, because I = m R + O(c−2),
where R is the post-Newtonian barycenter (refer to Sec. 9.3.6), and we work in a coordinate
system for which R = 0. From the expansion of the Newtonian potential we also get

∂ jU = Gm∂ j r
−1 + 1

2
G I kp∂ jkpr−1 + O(r−4). (11.168)
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These results indicate that on ∂M , the potential and its gradient are given schemati-
cally by U = R−1 + R−3 + · · · and ∂ jU = R−2 + R−4 + · · · This implies, for example,
that R4U∂pU = R + R−1 + · · · and R3U 2 = R + R−1 + · · · This reveals, finally, that
the surface integrals produce no R-independent contributions to Q jk[F].

We have obtained

Q jk[F]
tt= − 7

2c2

∑
A

MA�U�Ar j
Ark

A, (11.169)

and combining this with Eq. (11.162), we conclude that the radiative quadrupole moment
of Eq. (11.161) is indeed given by Eq. (11.156).

11.3.4 Radiative octupole moment

We turn next to computation of Q jka , the radiative octupole moment. According to
Eq. (11.119), this is defined by

Q jka := A jka + Ak ja − Aajk, (11.170)

where

A jka(τ ) := 1

c2

∫
M

τ 0 j (τ, x)xk xa d3x . (11.171)

We show below that this is given by

A jka tt= 1

c

∑
A

MA

(
1 + v2

A

2c2

)
v

j
Ar k

Ara
A

− 1

2c3

∑
A

∑
B 	=A

G MA MB

rAB

[(
nAB · vA

)
n j

ABrk
Ara

A + v
j
Ar k

Ara
A

]

+ 1

2c3

∑
A

∑
B 	=A

G MA MB

[(
nAB · vA

)
n j

ABn(k
ABra)

A − 7n j
ABv

(k
A ra)

A

+ 7v
j
An(k

ABra)
A

]

− 1

6c3

∑
A

∑
B 	=A

G MA MBrAB

[(
nAB · vA

)
n j

ABnk
ABna

AB − 11n j
ABn(k

ABv
a)
A

+ 11v
j
Ank

ABna
AB

]
+ O(c−5). (11.172)

This expression leaves out terms that would not survive a transverse-tracefree projection,
as well as R-dependent terms that can be freely discarded. It is understood that the position
vectors r A and the velocity vectors vA are evaluated at retarded time τ .
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Matter and field contributions

According to the discussion of Sec. 11.3.1, to calculate Q jka to the required degree of
accuracy we need an expression for c−2τ 0 j that includes terms of order c−1 (0.5pn) and
terms of order c−3 (1.5pn). Such an expression was worked out in Sec. 7.3.1 in the case of
a matter distribution that consists of a perfect fluid. According to Eq. (7.54b), we have that

c−2τ 0 j = 1

c
ρ∗v j

[
1 + 1

c2

(
1

2
v2 + 3U + � + p/ρ∗

)]

+ 1

4πGc3

[
3∂tU∂ jU + 4

(
∂ jU k − ∂kU j

)
∂kU

]
+ O(c−5) . (11.173)

For a system of point particles, U j =∑B G MBv
j
B/|x − r B |. Our expression for c−2τ 0 j

must be regularized with the help of Eq. (11.159), and the end result is

c−2τ 0 j = 1

c

∑
A

MAv
j
A

(
1 + v2

A

2c2
+ 3�U�A

c2

)
δ
(
x − r A

)

+ 1

16πGc3

[
12∂tU∂ jU + 16

(
∂ jU k − ∂kU j

)
∂kU

]
+ O(c−5), (11.174)

where �U�A is the partie finie of the Newtonian potential evaluated at x = r A, as given by
Eq. (11.157).

The octupole moment contains a contribution Q jka[M] that comes directly from the
matter distribution, and another contribution Q jka[F] that comes from the gravitational field.
They are obtained from A jka = A jka[M] + A jka[F] + O(c−5), which is then substituted
into Eq. (11.170). We have introduced

A jka[M] := 1

c

∑
A

MAv
j
A

(
1 + v2

A

2c2
+ 3�U�A

c2

)
rk

Ara
A (11.175)

and

A jka[F] := 1

4πGc3

∫
M

[
3∂tU∂ jU + 4

(
∂ jU p − ∂ pU j

)
∂pU

]
xk xa d3x, (11.176)

and the remainder of this subsection is devoted to computation of A jka[F].

Computation of the field integral: Organization

To simplify our computations we invoke the identity of Eq. (7.40),

∂tU + ∂ jU
j = 0. (11.177)

We recall that this is a direct consequence of the statement of mass conservation, ∂tρ
∗ +

∂ j (ρ∗v j ) = 0. We use the identity to eliminate ∂tU from Eq. (11.176), which becomes

A jka[F] = 1

Gc3

(
−3B jka

1 + 4B jka
2 − 4B jka

3

)
, (11.178)
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where

B jka
1 := 1

4π

∫
M

∂ jU∂pU pxk xa d3x, (11.179a)

B jka
2 := 1

4π

∫
M

∂pU∂ jU pxk xa d3x, (11.179b)

B jka
3 := 1

4π

∫
M

∂pU∂ pU j xk xa d3x . (11.179c)

After integration by parts, which is designed to leave one factor of U undifferentiated, we
find that each field integral B jka breaks up into a volume integral B jka[M ] and a surface
integral B jka[∂M ]. A number of terms are found to be proportional to δ jk , or δ ja , or
δka . All such terms will not survive a transverse-tracefree projection, and according to our
discussion near the end of Sec. 11.3.1, they can all be discarded. If, for example, B jka

contains a term δ jk Ba , then its contribution to Q jka will be of the form 2δ jk Ba − δ ja Bk .
The first term is a pure trace, and the second term is longitudinal, because it becomes
proportional to N j after Q jka is multiplied by Na ; in each case the contribution does not
survive the TT projection.

After eliminating all such terms, we find that

B jka
1

tt= B jka
1 [M ] + B jka

1 [∂M ] , (11.180a)

B jka
1 [M ] := − 1

4π

∫
M

U∂ j
pU p xk xa d3x , (11.180b)

B jka
1 [∂M ] := 1

4π

∮
∂M

U∂pU p xk xa d S j , (11.180c)

that

B jka
2

tt= B jka
2 [M ] + B jka

2 [∂M ] , (11.181a)

B jka
2 [M ] := − 1

4π

∫
M

U
(
∂ j

pU p xk xa + ∂ jU k xa + ∂ jU a xk
)

d3x , (11.181b)

B jka
2 [∂M ] := 1

4π

∮
∂M

U∂ jU p xk xa d Sp , (11.181c)

and that

B jka
3

tt= B jka
3 [M ] + B jka

3 [∂M ] , (11.182a)

B jka
3 [M ] := − 1

4π

∫
M

U
(∇2U j xk xa + ∂kU j xa + ∂aU j xk

)
d3x , (11.182b)

B jka
3 [∂M ] := 1

4π

∮
∂M

U∂ pU j xk xa d Sp . (11.182c)

There are many volume integrals to evaluate, but they are all of the form

Cmnpab := − 1

4π

∫
M

U∂mnU p xa xb d3x (11.183)
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and

Dmna := − 1

4π

∫
M

U∂mU n xa d3x . (11.184)

Specifically,

B jka
1 [M ] = C j pka

p , (11.185a)

B jka
2 [M ] = C j pka

p + D jka + D jak , (11.185b)

B jka
3 [M ] = C p jka

p + Dk ja + Dajk . (11.185c)

Similarly, the surface integrals are of the form

Emnabp := 1

4π

∮
∂M

U∂mU n xa xb d S p , (11.186)

with

B jka
1 [∂M ] = E pkaj

p , B jka
2 [∂M ] = E jpka

p , B jka
3 [∂M ] = E pjka

p . (11.187)

The key is therefore the evaluation of the generic volume integrals of Eqs. (11.183) and
(11.184), as well as the surface integral of Eq. (11.186). Once these are in hand, the
computation of B jka

1 , B jka
2 , and B jka

3 is soon completed, and Eq. (11.178) gives us A jka[F].
Adding the A jka[M] of Eq. (11.175) produces A jka , and from Eq. (11.170) we get our final
answer for Q jka .

Computation ofCmnpab

We follow the general methods described in Sec. 11.3.2. We begin with differentiation of
the vector potential U p =∑B G MBv

p
B/|x − r B |, which returns

∂mnU p = −
∑

B

G MBv
p
B

[
−3

(x − rB)m(x − rB)n

|x − r B |5 + δmn

|x − r B |3

+ 4π

3
δmnδ(x − r B)

]
. (11.188)

The last term, involving the δ-function, does not appear in a straightforward computa-
tion of ∂mnU p, in which one implicitly assumes that x 	= r B . Without it, however, our
expression would be wrong, because it would give rise to ∇2U p = 0 instead of the cor-
rect ∇2U p = −4πG

∑
B MBv

p
Bδ(x − r B). The distributional term is therefore inserted

to produce the correct answer when x = r B , and to ensure that U p satisfies the appro-
priate Poisson equation. After insertion of U =∑A G MA/|x − r A| and some algebra,
Eq. (11.183) becomes

Cmnpab =
∑

A

G2 M2
Av

p
A

(
δmn Fab

A − 3Fmnab
A

)

+
∑

A

∑
B 	=A

G2 MA MBv
p
B

(
δmn Fab

AB − 3Fmnab
AB + 1

3
δmn ra

Brb
B

rAB

)
, (11.189)
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where

Fmnab
A := 1

4π

∫
M

(x − rA)m(x − rA)n

|x − r A|6 xa xb d3x , (11.190a)

Fmnab
AB := 1

4π

∫
M

1

|x − r A|
(x − rB)m(x − rB)n

|x − r B |5 xa xb d3x , (11.190b)

and where

Fab
A := δmn Fmnab

A , Fab
AB := δmn Fmnab

AB . (11.191)

The term involving ra
Brb

B/rAB in Eq. (11.189) originates from the distributional term in
∂mnU p; a similar term involving ra

Arb
A/rAA was set equal to zero by invoking the regular-

ization prescription of Eq. (11.159).
We first set to work on Fmnab

A . Following the general strategy summarized in Box 11.3,
we substitute x = y + r A inside the integral, and get

Fmnbc
A = 1

4π

∫
M

ym yn ya yb

y6
d3 y + ra

B

4π

∫
M

ym yn yb

y6
d3 y

+ rb
B

4π

∫
M

ym yn ya

y6
d3 y + ra

Brb
B

4π

∫
M

ym yn

y6
d3 y. (11.192)

According to Eq. (1) of Box 11.3, each integral over M can be expressed as a volume integral
over the simpler domain My defined by y := | y| < R, plus a correction of fractional order
|r B |/R given by a surface integral over ∂My .

The first integral produces

1

4π

∫
My

ym yn ya yb

y6
d3 y = 〈〈N m N n N a N b〉〉

∫ R

0
dy

= 1

15
R
(
δmnδab + δmaδnb + δmbδna

)
, (11.193)

where we involve Eq. (4d) of Box 11.3. Because it is proportional to R, this contribution to
Fmnab

A can be discarded. The surface integral that corrects this will potentially give rise to
an R-independent contribution, and it should be evaluated carefully. It turns out, however,
that it is proportional to r p

B〈〈N m N n N a N b Np〉〉, and it vanishes because the angular average
of a product of an odd number of vectors N is necessarily zero. The neglected terms in
Eq. (1) are of order R−1 and higher, and we conclude that the first integral in Fmnab

A makes
no contribution to Cmnpab.

The second and third integrals produce terms such as

1

4π

∫
My

ym yn yb

y6
d3 y = 〈〈N m N n N b〉〉

∫ R

0

dy

y
, (11.194)

and this vanishes by virtue of Eq. (4c) of Box 11.3; the logarithmic divergence of the
radial integration requires no explicit regularization. The surface integral that corrects this
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is easily shown to be of order R−1, and we conclude that the second and third integrals do
not contribute to Cmnpab.

The fourth integral produces

1

4π

∫
My

ym yn

y6
d3 y = 〈〈N m N n〉〉

∫ R

0

dy

y2
= 1

3
δmn

∫ R

0

dy

y2
, (11.195)

and this involves a radial integration that is formally divergent. Once more the surface
integral does not contribute, and we have obtained

Fmnab
A = 1

3
δmnra

Arb
A

∫ R

0

dy

y2
(11.196)

for the field integral of Eq. (11.190), moduloR-dependent terms that can be freely discarded.
It is disturbing to see that Fmnab

A is proportional to a diverging integral, but it is a fortunate
outcome that the combination δmn Fab

A − 3Fmnab
A that appears in Cmnpab happens to vanish

identically. The divergence does not require explicit regularization, and all in all we find
that Fmnab

A makes no contribution to Cmnpab.
We next set to work on Fmnab

AB . Once more we follow the general strategy summarized in
Box 11.3, and we substitute x = y + r B inside the integral. We get

Fmnbc
AB = 1

4π

∫
M

1

| y − r AB |
ym yn ya yb

y5
d3 y + ra

B

4π

∫
M

1

| y − r AB |
ym yn yb

y5
d3 y

+ rb
B

4π

∫
M

1

| y − r AB |
ym yn ya

y5
d3 y + ra

Brb
B

4π

∫
M

1

| y − r AB |
ym yn

y5
d3 y . (11.197)

We begin with the first integral, which produces

1

4π

∫
My

1

| y − r AB |
ym yn ya yb

y5
d3 y.

To evaluate this we involve Eq. (2) of Box 11.3, and we express N m N n N a N b as

N m N n N a N b = N 〈mnab〉 + 1

7

(
δmn N 〈ab〉 + δma N 〈nb〉 + δmb N 〈na〉 + δna N 〈mb〉

+ δnb N 〈ma〉 + δab N 〈mn〉
)

+ 1

15

(
δmnδab + δmaδnb + δmbδna

)
, (11.198)

in terms of the angular STF tensors N 〈mnab〉 and N 〈mn〉. We perform the angular integrations
with the help of Eq. (3) of Box 11.3, and the remaining radial integrals are in the form of
Eq. (5). After some algebra, we obtain the expression

1

9
K (4, 1)n〈mnab〉

AB + 1

35
K (2, 1)

(
δmnn〈ab〉

AB + permutations
)

+ 1

15
K (0, 1)

(
δmnδab + δmaδnb + δmbδna

)
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for the volume integral. The corresponding surface integral is easily seen to be of order
R−1, and we arrive at

1

4π

∫
M

1

| y − r AB |
ym yn ya yb

y5
d3 y = 1

18
rABn〈mnab〉

AB + 1

28
rAB

(
δmnn〈ab〉

AB + δman〈nb〉
AB

+ δmbn〈na〉
AB + δnan〈mb〉

AB + δnbn〈ma〉
AB + δabn〈mn〉

AB

)
− 1

30
rAB

(
δmnδab + δmaδnb + δmbδna

)
(11.199)

after using Eq. (5) of Box 11.3 to evaluate the radial integrals.
We next turn to the second and third integrals, which are both approximated by

1

4π

∫
My

1

| y − r AB |
ym yn ya

y5
d3 y.

To evaluate this we involve Eq. (2), and we express N m N n N a as

N m N n N a = N 〈mna〉 + 1

5

(
δmn N a + δma N n + δna N m

)
, (11.200)

in terms of the angular STF tensor N 〈mna〉. We carry out the angular integrations with the
help of Eq. (3), and the remaining radial integrals are in the form of Eq. (5). After some
algebra, we obtain the expression

1

7
K (3, 0)n〈mna〉

AB + 1

15
K (1, 0)

(
δmnna

AB + δmann
AB + δnanm

AB

)
for the volume integral. The corresponding surface integral is once more of order R−1, and
we arrive at

1

4π

∫
M

1

| y − r AB |
ym yn ya

y5
d3 y = 1

12
n〈mna〉

AB + 1

10

(
δmnna

AB + δmann
AB + δnanm

AB

)
(11.201)

after using Eq. (5) to evaluate the radial integrals.
The final step in the computation of Fmnab

AB is evaluation of the fourth integral, which is
approximated by

1

4π

∫
My

1

| y − r AB |
ym yn

y5
d3 y.

After following the same familiar steps, this becomes 1
5 K (2,−1)n〈mn〉

AB + 1
3 K (0,−1)δmn ,

and the corresponding surface integral is of order R−2. We arrive at

1

4π

∫
M

1

| y − r AB |
ym yn

y5
d3 y = 1

6rAB
n〈mn〉

AB + 1

3
K (0,−1)δmn, (11.202)

and we note that K (0,−1) is formally a divergent integral of the sort encountered in
Eq. (11.196). We shall see that this divergence requires no explicit regularization, because
(as happened before) it eventually drops out of the calculation.
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Collecting results, we have obtained

Fmnab
AB = 1

18
rABn〈mnab〉

AB

+ 1

28
rAB

(
δmnn〈ab〉

AB + δman〈nb〉
AB + δmbn〈na〉

AB + δnan〈mb〉
AB + δnbn〈ma〉

AB + δabn〈mn〉
AB

)
− 1

30
rAB

(
δmnδab + δmaδnb + δmbδna

)

+ 1

12
n〈mna〉

AB rb
B + 1

10

(
δmnna

AB + δmann
AB + δnanm

AB

)
rb

B

+ 1

12
n〈mnb〉

AB ra
B + 1

10

(
δmnnb

AB + δmbnn
AB + δnbnm

AB

)
ra

B

+ 1

6rAB
r 〈mn〉

AB ra
Brb

B + 1

3
K (0,−1)δmnra

Brb
B (11.203)

for the field integral of Eq. (11.190), moduloR-dependent terms that can be freely discarded.
The trace of this is

Fab
AB = 1

4
rABn〈ab〉

AB − 1

6
rABδab + 1

2
na

ABrb
B + 1

2
nb

ABra
B + K (0,−1)ra

Brb
B, (11.204)

and we see that, as claimed, the terms involving K (0,−1) cancel out in the combination
δmn Fab

AB − 3Fmnab
AB that appears in Eq. (11.189); these terms make no contribution to Cmnpab .

We may now substitute Eqs. (11.196), (11.203), and (11.204) into Eq. (11.189). After
simplification, our final result is

Cmnpab =
∑

A

∑
B 	=A

G2 MA MBv
p
B

[
−1

6
rABn〈mnab〉

AB

− 3

28
rAB

(
δman〈nb〉

AB + δmbn〈na〉
AB + δnan〈mb〉

AB + δnbn〈ma〉
AB + δabn〈mn〉

AB

)

+ rABδmn
(1

7
n〈ab〉

AB − 1

15
δab
)

+ 1

10
rAB

(
δmaδnb + δmbδna

)

− 1

4
n〈mna〉

AB rb
B − 1

4
n〈mnb〉

AB ra
B − 3

10

(
δmann

AB + δnanm
AB

)
rb

B

− 3

10

(
δmbnn

AB + δnbnm
AB

)
ra

B + 1

5
δmn
(

na
ABrb

B + nb
ABra

B

)

+ 1

rAB

(
−1

2
n〈mn〉

AB + 1

3
δmn
)

ra
Brb

B

]
. (11.205)

Computation of Dmna

After inserting the expressions for U and U n within Eq. (11.184), we obtain

Dmna =
∑

A

G2 M2
Avn

A Ema
A +

∑
A

∑
B 	=A

G2 MA MBvn
B Ema

AB, (11.206)
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where

Ema
A := 1

4π

∫
M

(x − rA)m xa

|x − r A|4 d3x, (11.207a)

Ema
AB := 1

4π

∫
M

(x − rB)m xa

|x − r A||x − r B |3 d3x, (11.207b)

were introduced back in Eqs. (11.127). These integrals were evaluated in Sec. 11.3.2, and
we obtained

Ema
A = 0, (11.208a)

Ema
AB = 1

4
rABn〈ma〉

AB − 1

6
rABδma + 1

2
nm

ABra
B ; (11.208b)

these are Eqs. (11.138) and (11.153), respectively. Making the substitutions, we arrive at

Dmna =
∑

A

∑
B 	=A

G2 MA MBvn
B

(
1

4
rABn〈ma〉

AB − 1

6
rABδma + 1

2
nm

ABra
B

)
. (11.209)

Computation of Emnabp

The surface integrals

Emnabp = 1

4π

∮
∂M

U∂mU n xa xb d S p (11.210)

are evaluated at |x| = R. On ∂M the Newtonian potential has the schematic form
U = R−1 + R−3 + · · · , and the vector potential can be similarly expressed as U n =
R−2 + R−3 + · · · This implies that ∂mU n = R−3 + R−4 + · · · We recall that U does
not include an R−2 term because the Newtonian dipole moment I :=∑A MA r A can be set
equal to zero, and similarly, U n does not contain anR−1 term because İ j =∑A MAv

j
A = 0.

With x j = RN j and d S j = R2 N j d�, we find that the leading term in the surface inte-
gral is of order R0, and that it must be evaluated carefully. Further investigation re-
veals that at this order, ∂mU n involves an even number of angular vectors N , which
implies that the surface integral involves an odd number of such vectors. This guarantees
that

Emnabp = 0, (11.211)

modulo R-dependent terms that can be freely discarded.

Computation of A jka[F]

It is now a straightforward task to substitute Eq. (11.205) for Cmnpab, Eq. (11.209) for Dmna ,
and Eq. (11.211) for Emnabp into Eqs. (11.185) and (11.187). These results, in turn, can be
inserted within Eq. (11.180) for Babc

1 , Eq. (11.181) for Babc
2 , and Eq. (11.182) for Babc

3 .
The final step is to substitute these expressions into the right-hand side of Eq. (11.178).
The end result, after much simplification, and after discarding terms that will not survive
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the TT projection, is

A jka[F]
tt= 1

c3

∑
A

∑
B 	=A

G MA MB

{
rAB

[
−1

6

(
nAB · vB

)
n j

ABnk
ABna

AB

+ 11

12
n j

AB

(
nk

ABva
B + vk

Bna
AB

)− 11

6
v

j
Bnk

ABna
AB

]

− 1

4

(
nAB · vB

)
n j

AB

(
nk

ABra
B + rk

Bna
AB

)+ 7

4
n j

AB

(
vk

Bra
B + rk

Bva
B

)
− 7

4
v

j
B

(
nk

ABra
B + rk

Bna
AB

)− 1

rAB

[
1

2

(
nAB · vB

)
n j

ABrk
Bra

B

+ 7

2
v

j
Br k

Bra
B

]}
. (11.212)

Final answer

Equation (11.212) for A jka[F] and Eq. (11.175) for A jka[M] can finally be combined to
form A jka , as defined by Eq. (11.171). After inserting

∑
B 	=A G MB/rAB for �U�A and

additional simplification, we obtain Eq. (11.172), as it appears in Section 11.3.4. To arrive
at this result we rearrange some of the sums in Eq. (11.212) and switch the identities of
bodies A and B; this permutation affects the signs of some terms, because nB A = −nAB .

11.3.5 Radiative 4-pole and 5-pole moments

Our next step is computation of Q jkab, the radiative 4-pole moment, and Q jkabc, the
radiative 5-pole moment. These are defined by Eq. (11.119),

Q jkab(τ ) := 1

c2

∫
M

τ jk(τ, x)xa xb d3x (11.213)

and

Q jkabc(τ ) := 1

c3

∂

∂τ

∫
M

τ jk(τ, x)xa xbxc d3x . (11.214)

We show below that these are given by

Q jkab tt= 1

c2

∑
A

MAv
j
Avk

Ara
Arb

A

− 1

2c2

∑
A

∑
B 	=A

G MA MB

rAB
n j

ABnk
ABra

Arb
A

+ 1

12c2

∑
A

∑
B 	=A

G MA MBrABn j
ABnk

AB

(
na

ABnb
AB − δab

)
+ O(c−4) (11.215)
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and

Q jkabc tt= 1

c3

∂

∂τ

[∑
A

MAv
j
Avk

Ara
Arb

Arc
A − 1

2

∑
A

∑
B 	=A

G MA MB

rAB
n j

ABnk
ABra

Arb
Arc

A

+ 1

4

∑
A

∑
B 	=A

G MA MBrABn j
ABnk

ABr (a
A

(
nb

ABnc)
AB − δbc)

)]

+ O(c−5). (11.216)

The index symmetrization in the last sum of Eq. (11.216) is over the trio of indices abc. We
leave the differentiation with respect to τ unevaluated for the time being; it is advantageous
to take care of this at a later stage.

According to the discussion of Sec. 11.3.1, to calculate Q jkab to the required degree of
accuracy we need an expression for τ jk that includes terms of order c0 only. According to
Eq. (7.54c), we have that

τ jk = ρ∗v jvk + p δ jk + 1

4πG

(
∂ jU∂kU − 1

2
δ jk∂pU∂ pU

)
+ O(c−2), (11.217)

and this becomes

τ jk =
∑

A

MAv
j
Avk

Aδ
(
x − r A

)+ 1

4πG

(
∂ jU∂kU − 1

2
δ jk∂pU∂ pU

)
+ O(c−2) (11.218)

for a system of point particles. The matter contribution can be calculated at once:

Q jkab[M] = 1

c2

∑
A

MAv
j
Avk

Ara
Arb

A. (11.219)

The field contribution is

Q jkab[F] = 1

4πGc2

∫
M

∂ jU∂kU xa xb d3x − 1

8πGc2
δ jk

∫
M

∂pU∂ pU xa xb d3x,

(11.220)

and the second term, because it comes with a factor δ jk in front of the integral, will not
survive a TT projection. The complete 4-pole moment is Q jkab = Q jkab[M] + Q jkab[F] +
O(c−4).

To evaluate the first integral we employ our usual strategy of integrating by parts so as to
leave one factor of U undifferentiated. We find that the integral splits into a volume integral
over the domain M and a surface integral over ∂M , and that Eq. (11.220) becomes

Q jkab[F]
tt= Q jkab[F,M ] + Q jkab[F, ∂M ], (11.221)

where

Q jkab[F,M ] := − 1

4πGc2

∫
M

U∂ jkU xa xb d3x, (11.222a)

Q jkab[F, ∂M ] := 1

4πGc2

∮
∂M

U∂kU xa xb d S j . (11.222b)

To arrive at Eq. (11.221) we have discarded additional terms that will not survive a TT pro-
jection. For example, a contribution to Q jkab of the form δ ja Akb would become N j Akb Nb
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after contraction with Na Nb, and this would make an irrelevant, longitudinal contribution
to h jk .

To evaluate the volume integral in Eqs. (11.222) we insert the familiar expression for U ,
as well as

∂ jkU = −
∑

A

G MA

[
−3

(x − rA) j (x − rA)k

|x − r A|5 + δ jk

|x − r A|3 + 4π

3
δ jkδ(x − r A)

]
.

(11.223)

Once more we ignore the terms in δ jk , and find that

Q jkcd [F,M ]
tt= − 3

c2

∑
A

G M2
A F jkab

A − 3

c2

∑
A

∑
B 	=A

G MA MB F jkab
B A , (11.224)

where the field integrals F jkab
A and F jkab

B A were introduced in Sec. 11.3.4; they are defined
by Eqs. (11.190), and evaluated in Eqs. (11.196) and (11.203). From these results we learn
that F jkab

A is proportional to δ jk and will not survive a TT projection, and that F jkab
B A can

be expressed as

F jkab
B A

tt= 1

36
rABn j

ABnk
AB

(
2na

ABnb
AB + δab

)− 1

6
n j

ABnk
ABn(a

ABrb)
A

+ 1

6rAB
n j

ABnk
ABra

Arb
A, (11.225)

after discarding terms that will be projected out and further simplification.
Inserting these expressions within Q jkab[F,M ], we arrive at

Q jkab[F,M ]
tt= − 1

12c2

∑
A

∑
B 	=A

G MA MBrABn j
ABnk

AB

(
2na

ABnb
AB + δab

)

+ 1

2c2

∑
A

∑
B 	=A

G MA MBn j
ABnk

ABn(a
ABrb)

A

− 1

2c2

∑
A

∑
B 	=A

G MA MB

rAB
n j

ABnk
ABra

Arb
A. (11.226)

This expression can be simplified. We examine the second line, which we write as

1

4c2

∑
A

∑
B 	=A

G MA MBn j
ABnk

ABna
ABrb

A + (a ↔ b).

By rearranging the sums, we see that this is also

1

4c2

∑
A

∑
B>A

G MA MBn j
ABnk

AB

(
na

ABrb
A + na

B Arb
B

)+ (a ↔ b),

or

1

4c2

∑
A

∑
B>A

G MA MBn j
ABnk

ABna
AB

(
rb

A − rb
B

)+ (a ↔ b).
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The term within brackets is rABnb
AB , and we see that the second line in Q jkab[F,M ] can

be joined with the first. Our final expression is

Q jkab[F,M ]
tt= 1

12c2

∑
A

∑
B 	=A

G MA MBrABn j
ABnk

AB

(
na

ABnb
AB − δab

)

− 1

2c2

∑
A

∑
B 	=A

G MA MB

rAB
n j

ABnk
ABra

Arb
A + O(c−4). (11.227)

Moving on the surface integral of Eq. (11.222), we recall our previous work in
Sec. 11.3.3, in which U had the schematic structure U = R−1 + R−3 + · · · when evalu-
ated on ∂M , while its gradient is given by ∂kU = R−2 + R−4 + · · · With xa = RN a and
d S j = R2 N j d�, these statements imply that Q jkab[F, ∂M ] contains terms at orders R,
R−1, and so on, but that there is no R-independent contribution. For this reason, we may
set

Q jkab[F, ∂M ] = 0, (11.228)

modulo R-dependent terms that can be freely discarded.
Collecting results, we find that the radiative 4-pole moment is given by the expression

displayed back in Eq. (11.215). The computation of the radiative 5-pole moment is accom-
plished by following the same familiar steps. We shall not labor through the details here,
but simply state that the final answer is the expression displayed back in Eq. (11.216).

11.3.6 Surface integrals

At this stage we have computed all the radiative multipole moments that contribute to h jk
N

through 1.5pn order. The multipole expansion of Eq. (11.118), however, also involves a
pair of surface integrals, P jk and P jka , which are defined by Eqs. (11.120). Our task in this
subsection is to evaluate them. We shall find that they make no contributions to h jk

N .
We begin with

P jk :=
∮

∂M

(
τ j pxk + τ kpx j − ∂qτ

pq x j xk
)

d Sp, (11.229)

in which τ jk is expressed as a function of τ and x, and where we suppress the primes on
the integration variables to simplify the notation. The effective stress tensor τ jk is given to
leading order by Eq. (11.218), and this reduces to

τ jk tt= 1

4πG
∂ jU∂kU + O(c−2) (11.230)

when it is evaluated on ∂M , where the matter contribution vanishes. This expression,
however, is not sufficient to achieve the required degree of accuracy for the surface integrals
(as specified back in Sec. 11.3.1); for this we must also incorporate terms of order c−2. An
improved expression can be obtained from Eqs. (7.49) and (7.52). In this we substitute the
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near-zone gravitational potentials of Box 7.5, and we obtain

τ jk tt= 1

4πG
∂ jU∂kU + 1

4πGc2

[
2∂ ( jU∂k)ψ + ∂ ( jU∂k)∂t t X + 8∂ ( jU∂tU

k)

− 4
(
∂ jUp − ∂pU j

)(
∂kU p − ∂ pU k

)]+ O(c−4),

(11.231)

after discarding all terms proportional to δ jk , for the usual reason that they will not survive
a TT projection. This expression involves our old friends the Newtonian potential U and the
vector potential U j , but it involves also the post-Newtonian potentials ψ and X that were
first introduced in Sec. 7.3. These were evaluated for a system of point masses in Sec. 9.6;
refer to Eqs. (9.268), (9.270), and (9.272).

To calculate P jk we also need ∂qτ
pq , which we express as −c−1∂tτ

0p by involving the
conservation identities ∂βταβ = 0. With Eq. (11.174), this is

∂qτ
pq = 1

4πGc2

∂

∂τ

[
3∂qU q∂ pU − 4

(
∂ pU q − ∂qU p

)
∂qU

]
, (11.232)

in which we have inserted the identity ∂tU + ∂qU q = 0. The derivative operator can be
taken outside of the surface integral.

From the explicit expressions obtained in Sec. 9.6 for U , U j , ψ , and ∂t t X , we observe that
each one of these quantities has the schematic form |x|−1 + |x|−2 + · · · when expanded in
inverse powers of |x|. It follows that when ∂ jU , ∂ jψ , ∂ j

t t X , ∂kU j , and ∂tU j are evaluated on
∂M , they each have the schematic formR−2 + R−3 + · · · This means that τ jk = O(R−4),
and it follows that a quantity such as τ j pxkd Sp must scale as R−1; this does not give rise
to an R-independent contribution to the surface integral. A similar argument reveals that
∂qτ

pq = O(R−5), so that ∂qτ
pq x j xkd Sp scales as R−1; this also makes no contribution.

We conclude that

P jk = 0, (11.233)

modulo R-dependent terms that can be freely discarded.
We next evaluate

P jka := 1

c

∂

∂τ

∮
∂M

(
τ j pxk xa + τ kpx j xa − τ apx j xk

)
d Sp, (11.234)

using the effective stress tensor displayed in Eq. (11.231). Relative to P jk , this surface
integral involves an additional power of x, and therefore an additional power of R; because
P jk was seen to be of order R−1, there is a chance that the surface integral might contain
an R-independent contribution. As we shall see presently, however, this does not happen,
and as a matter of fact,

P jka = 0, (11.235)

modulo R-dependent terms that can be freely discarded. This conclusion emerges as a
result of a closer examination of the terms that make up τ jk . It was stated previously that at
leading order, ∂ jU , ∂ jψ , ∂ j

t t X , ∂kU j , and ∂tU j all scale as R−2 when they are evaluated on
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∂M , so that τ jk = O(R−4). With the four powers of R that are contained in the position
vectors and the surface element, we find that the integral does indeed scale as R0. It can be
verified, however, that ∂ jU , ∂ jψ , ∂

j
t t X , ∂kU j , and ∂tU j are all proportional to a product

of an odd number of angular vectors N . This implies that τ jk involves an even number of
such vectors, and this, in turn, implies that the integrand in Eq. (11.234) contains an odd
number of angular vectors. Integration gives zero, and we have established the statement
of Eq. (11.235).

11.3.7 Tails: Wave-zone contribution to the gravitational waves

We departed on our long journey to calculate the gravitational-wave field back in Sec. 11.3.1,
and all the while we have focused our attention on the near-zone piece h jk

N . We have ignored
the wave-zone piece h jk

W , except to announce that it makes a relevant contribution at 1.5pn

order. In this subsection we make amends and calculate this final contribution to the
gravitational-wave field, which is generated entirely by field energy situated in the wave
zone. We shall show that it is given by the so-called tail integral

h jk
W

tt= 4G

c4 R

G M

c3

∫ ∞

0

(4)

I 〈 jk〉(τ − ζ )

(
ln

ζ

ζ + 2R/c
+ 11

12

)
dζ, (11.236)

which involves the entire past history of the system, from the infinite past at ζ = ∞ to
the current (retarded) time at ζ = 0. The wave-zone contribution depends on M , the total
gravitational mass of the system, as well as I jk , the Newtonian quadrupole moment of
the matter distribution; in Eq. (11.236) the quadrupole moment is made tracefree and
differentiated four times with respect to its argument. Recalling our discussion near the end
of Sec. 11.3.1, we see that h jk

W is a correction of order c−3 relative to the leading, quadrupole
term in h jk ; the wave-zone contribution to the gravitational-wave field is therefore a term of
1.5pn order. In the course of our calculations we shall discover that h jk

W comes about because
the gravitational waves propagate not in the fictitious flat spacetime of post-Minkowskian
theory, but in a physical spacetime that is curved by the presence of a mass M .

Wave-zone integrals

We begin our derivation of Eq. (11.236) by recalling that back in Sec. 6.3.5, we devised a
method to calculate h jk

W when τ jk can be expressed as a sum of terms of the form

τ jk[�, n] = 1

4π

f (τ )

Rn
N 〈L〉, (11.237)

in which f is an arbitrary function of τ , n is an arbitrary integer, and N 〈L〉 is an angular
STF tensor of degree � of the sort introduced back in Sec. 1.5.3. According to Eq. (6.105),
h jk

W is then a sum of terms of the form

h jk
W [�, n] = 4G

c4 R
N 〈L〉

{∫ R

0
ds f (τ − 2s/c)A(s, R) +

∫ ∞

R
ds f (τ − 2s/c)B(s, R)

}
,

(11.238)
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where

A(s, R) =
∫ R+s

R

P�(ξ )

pn−1
dp, B(s, R) =

∫ R+s

s

P�(ξ )

pn−1
dp, (11.239)

in which P� is a Legendre polynomial of argument ξ = (R + 2s)/R − 2s(R + s)/(Rp).
We shall rely on these results in the remainder of this subsection.

Construction of the source term

The wave-zone contribution to h jk is obtained by evaluating the integrals displayed in
Eq. (11.238), and this relies on a decomposition of τ jk into irreducible pieces of the form
of Eq. (11.237). Our first order of business, therefore, is to obtain an appropriate expression
for the effective stress tensor; this expression must be valid everywhere in the wave zone.

The source term is constructed from the gravitational potentials, and wave-zone expres-
sions for these were obtained in Sec. 7.4. According to the summary presented in Box 7.7,
we have

h00 = 4G

c2

[
M

R
+ 1

2
∂ jk

(I jk

R

)
+ · · ·

]
, (11.240a)

h0 j = 4G

c2

[
− 1

2c
J jk Nk

R2
− 1

2c
∂k

( İ jk

R

)
+ · · ·

]
, (11.240b)

h jk = 4G

c2

[
1

2c2

Ï jk

R
+ · · ·

]
. (11.240c)

The potentials are expressed in terms of R := |x|, N := x/R, and the multipole moments
that were introduced back in Sec. 7.1.2. For a system of N bodies, and to lowest pn order, we
have the total gravitational mass M =∑A MA + O(c−2), the angular-momentum tensor
J jk =∑A MA(v j

Ar k
A − r j

Avk
A) + O(c−2), and the quadrupole moment

I jk(τ ) =
∑

A

MAr j
Ark

A + O(c−2). (11.241)

These expressions are obtained from the equations listed in Box 7.7 by specializing them to
a system of point masses. The mass and angular momentum are conserved quantities, while
I jk depends on retarded time τ := t − R/c. For the rest of this discussion we replace the
formal post-Minkowskian moment I jk with its Newtonian expression I jk =∑A MAr j

Ark
A.

The post-Newtonian order of each term in Eqs. (11.240) was identified in Box 7.7:
relative to G M/(c2 R), each term involving I jk is of 1pn order, and the term involving the
angular-momentum tensor is also of 1pn order; the expressions are therefore truncated at
1pn order, and the neglected terms are of 1.5pn order. The rules to count post-Newtonian
orders in wave-zone potentials were derived back in Sec. 7.2.3. It is useful to recall that in the
wave zone, R is larger than λc, the characteristic wavelength of the gravitational radiation;
it follows that if rc is a characteristic length scale of the source, then rc/R ∼ rc/λc ∼ vc/c,
where vc is the source’s characteristic velocity.

In the wave zone, away from the matter distribution, the effective stress tensor τ jk is
made up of the Landau–Lifshitz pseudotensor (−g)t jk

LL and the harmonic-gauge contribution
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(−g)t jk
H . Sufficiently accurate expressions for these quantities were obtained in Sec. 7.3.1.

The leading term comes from the Landau–Lifshitz pseudotensor of Eq. (7.48); this is

c4

64πG
∂ j h00∂kh00,

where we ignore the term proportional to δ jk because, as we observed many times before,
it will not survive a TT projection. Using Eq. (11.240), we find that this is equal to

G

4π

[
M2

R4
N j N k − M

R2
N ( j∂k)

pq

(
I pq

R

)
+ · · ·

]
.

It is easy to show that relative to G M2/R4, the second term is of order (vc/c)2, and the
neglected terms are smaller by an additional power of vc/c. Take, for example, the term that
arises when R−1 is differentiated three times. This is of the schematic form (M/R2)(I/R4),
and relative to M2/R4 this is of order (rc/R)2 ∼ (rc/λc)2 ∼ (vc/c)2. As another example,
take the term that arises when I pq is differentiated three times. This is of the schematic form
(M/R2)(

...
I /c3 R), and relative to M2/R4 this is of order r2

c R/(ctc)3 ∼ (rc/λc)2 ∼ (vc/c)2.
We wish our expression for τ jk to be as accurate as what was displayed previously. In

particular, we want to be sure that our expression contains all occurrences of terms involving
a product of M with I jk or its derivatives; all such terms contribute at order (vc/c)2 relative
to G M2/R4, and they must all be included. A careful examination of Eq. (7.49) reveals
that the relevant terms are contained in

(−g)t jk
LL = c4

16πG

[
1

4
∂ j h00∂kh00 + ∂ j h00∂0h0k + ∂kh00∂0h0 j

+ 1

4
∂ j h00∂kh p

p + 1

4
∂kh00∂ j h p

p + · · ·
]
, (11.242)

and that the additional terms are smaller by additional powers of vc/c.
A careful examination of Eq. (7.53) reveals that

(−g)t jk
H = c4

16πG

[
−h00∂00h jk + · · ·

]
(11.243)

is also a relevant term. It is easy to see why: after writing ∂00 = c−2∂ττ , we find that this
contribution to τ jk is schematically

c2

G
h00∂ττ h jk ∼ G

c4

M
(4)

I jk

R2
, (11.244)

in which the label (4) indicates that the quadrupole moment tensor is differentiated four
times with respect to proper time τ . We have that d4 I jk/dτ 4 ∼ Mr2

c /t4
c , R > λc = ctc, and

all this implies that this term is of order (vc/c)2 relative to G M2/R4.
This is the first time that (−g)tαβ

H explicitly enters a computation. As we saw back in
Sec. 6.2.1, this contribution to ταβ comes from the difference between ∂μν Hαμβν and −�hαβ

on the left-hand side of the Landau–Lifshitz formulation of the Einstein field equations. It is
this term that informs us that the gravitational waves are propagating not in flat spacetime,
but in a curved spacetime whose metric gαβ must be obtained self-consistently from the
gravitational potentials (refer to Box 6.3). It is this contribution to ταβ , therefore, that
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reveals the differences between the light cones of the mathematical flat spacetime and those
of the physical curved spacetime. And as we shall see, it is this term that generates the tail
integral of Eq. (11.236).

Collecting results, we find that the appropriate starting expression for the source term is

τ jk = c4

16πG

[
1

4
∂ j h00∂kh00 + 1

c
∂ j h00∂τ h0k + 1

c
∂kh00∂τ h0 j

+ 1

4
∂ j h00∂kh p

p + 1

4
∂kh00∂ j h p

p − 1

c2
h00∂ττ h jk + · · ·

]
. (11.245)

We must now turn this into something more concrete, a set of expressions that are ready
for insertion within Eq. (11.238).

Evaluation of the source term

The first step is to insert Eqs. (11.240) within Eq. (11.245). We need

∂ j h00 = 4G

c2

[
− M

R2
N j + 1

2
∂ j

pq

(
I pq

R

)
+ · · ·

]
, (11.246a)

∂τ h0 j = 4G

c2

[
− 1

2c
∂p

(
Ï j p

R

)
+ · · ·

]
, (11.246b)

∂ j h p
p = 4G

c2

[
− 1

2c2

Ï

R2
N j + · · ·

]
, (11.246c)

∂ττ h jk = 4G

c2

[
1

2c2 R

(4)

I jk + · · ·
]

, (11.246d)

in which Ï := Ï pp. After some algebra, we obtain

τ jk = G M

4π R2

[
M

R2
N j N k − N ( j∂k)

pq

(
I pq

R

)
+ 4

c2
N ( j∂p

(
Ï k)p

R

)

+ 1

c2

(
Ï

R2
+ 1

c

...
I
R

)
N j N k − 2

c4

(4)

I jk + · · ·
]
. (11.247)

The next step is to evaluate the derivatives. We recall that ∂ j R = N j and ∂ j Nk =
R−1(δ jk − N j Nk). We recall also that I jk depends on the spatial coordinates through
τ = t − R/c, so that ∂p I jk = −c−1 İ jk Np. Using these rules, we find that

∂p

(
Ï jk

R

)
= −

(
Ï jk

R2
+ 1

c

...
I

jk

R

)
Np (11.248)

and

∂ j
pq

(
I pq

R

)
= −

(
15

I pq

R4
+ 15

c

İ pq

R3
+ 6

c2

Ï pq

R2
+ 1

c3

...
I

pq

R

)
N j Np Nq

+
(

3
I pq

R4
+ 3

c

İ pq

R3
+ 1

c2

Ï pq

R2

)(
N jδpq + δ j

p Nq + δ j
q Np

)
. (11.249)
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With these results, Eq. (11.247) becomes

τ jk = G M2

4π R4
N j N k + G M

4π R2

[(
15

I pq

R4
+ 15

c

İ pq

R3
+ 6

c2

Ï pq

R2
+ 1

c3

...
I

pq

R

)
N j N k Np Nq

−
(

3
I

R4
+ 3

c

İ

R3
− 1

c3

...
I
R

)
N j N k

−
(

3
I jp

R4
+ 3

c

İ jp

R3
+ 3

c2

Ï j p

R2
+ 2

c3

...
I

jp

r

)
N k Np

−
(

3
I kp

R4
+ 3

c

İ kp

R3
+ 3

c2

Ï kp

R2
+ 2

c3

...
I

kp

R

)
N j Np − 2

c4

(4)

I jk + · · ·
]
.

(11.250)

The final step is to express the angular dependence of τ jk in terms of STF tensors
N 〈L〉. We involve the definition of Eq. (1.155), and write N j N k N p N q in terms of N 〈 jkpq〉,
N j N k N p in terms of N 〈 jkp〉, and N j N k in terms of N 〈 jk〉. After discarding all terms
proportional to δ jk , our final expression for the effective stress tensor is

τ jk = G M2

4π R4
N 〈 jk〉 + G M

4π R2

[(
15

Ipq

R4
+ 15

c

İpq

R3
+ 6

c2

Ï pq

R2
+ 1

c3

...
I pq

R

)
N 〈 jkpq〉

+
(

−6

7

I

R4
− 6

7c

İ

R3
+ 6

7c2

Ï

R2
+ 8

7c3

...
I
R

)
N 〈 jk〉

+ 2

(
9

7

I ( j
p

R4
+ 9

7c

İ ( j
p

R3
− 9

7c2

Ï ( j
p

R2
− 12

7c3

...
I

( j
p

R

)
N 〈k)p〉

− 6

5c2

Ï 〈 jk〉

R2
− 6

5c3

...
I

〈 jk〉

R
− 2

c4

(4)

I 〈 jk〉 + · · ·
]
. (11.251)

This expression is a sum of terms that have the structure of Eq. (11.237). For example, the
first group of terms inside the square brackets has � = 4, and it consists of four terms with
n = 6, n = 5, n = 4, and n = 3; for each one of these contributions we can easily read off
the appropriate function f .

We shall keep in mind that it is the last term of Eq. (11.251), the one involving four
derivatives of I 〈 jk〉(τ ), that originated from (−g)t jk

H . It is this term that will reveal the
differences between the light cones of the mathematical flat spacetime and those of the
physical curved spacetime.

Evaluation of the wave-zone integrals

Each term τ jk[�, n] in Eq. (11.251) makes a contribution to the gravitational-wave field
h jk given by Eq. (11.238). To see how these integrals are evaluated, we shall work through
the representative case of � = 0 and n = 3.

We begin by extracting the relevant piece of τ jk from Eq. (11.251). Comparing with
Eq. (11.237), we find that in this case the function f is given by

f (τ ) = −6

5

G M

c3

...
I

〈 jk〉
. (11.252)
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We next evaluate the functions A and B. With � = 0 and n = 3, the computations are
elementary, and the results are

A(s, R) = 1

R − 1

R + s
, B(s, R) = 1

s
− 1

R + s
. (11.253)

We now set to work on the integrals that appear in Eq. (11.238). The first is

FA :=
∫ R

0
ds f (τ − 2s/c)A(s, R) =

∫ R

0
ds f (τ − 2s/c)

(
1

R − 1

R + s

)
, (11.254)

and we rewrite it as

FA = 1

R

∫ R

0
f (τ − 2s/c) ds −

∫ R

0
f (τ − 2s/c) d ln(R + s). (11.255)

After integrating the second term by parts, our final expression is

FA = − f (τ − 2R/c) ln(R + R) + f (τ ) ln R + 1

R

∫ R

0
f (τ − 2s/c) ds

− 2

c

∫ R

0
ḟ (τ − 2s/c) ln

R + s

s
ds − 2

c

∫ R

0
ḟ (τ − 2s/c) ln s ds. (11.256)

The second integral is

FB :=
∫ ∞

R
ds f (τ − 2s/c)B(s, R) =

∫ ∞

R
ds f (τ − 2s/c)

(
1

s
− 1

R + s

)
, (11.257)

and we rewrite it as

FB = −
∫ ∞

R
f (τ − 2s/c) d ln

R + s

s
. (11.258)

Integration by parts yields

FB = f (τ − 2R/c) ln
R + R
R − 2

c

∫ ∞

R
ḟ (τ − 2s/c) ln

R + s

s
ds, (11.259)

assuming that f (τ − 2s/c) goes to zero sufficiently rapidly as s → ∞ to ensure that there
is no boundary term at s = ∞. (Physically, this condition implies that the system is only
weakly dynamical in the infinite past.)

The sum of FA and FB is

F = − f (τ − 2R/c) lnR + f (τ ) ln R + 1

R

∫ R

0
f (τ − 2s/c) ds

− 2

c

∫ R

0
ḟ (τ − 2s/c) ln s ds − 2

c

∫ ∞

0
ḟ (τ − 2s/c) ln

R + s

s
ds. (11.260)

This result is exact, but to simplify it we exploit the fact that we may remove from this
all R-dependent pieces. As a formal tool to achieve this, we express f (τ − 2s/c) and its
derivative as an infinite Taylor series in powers of s, and we evaluate the two integrals from
s = 0 to s = R. We find that they combine to give f (τ ), plus terms that can be discarded
because they come with explicit factors of R. After also expanding f (τ − 2R/c) in powers
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of R, we find that

F = f (τ )
[
1 + ln(R/R)

]
− 2

c

∫ ∞

0
ḟ (τ − 2s/c) ln

R + s

s
ds, (11.261)

modulo R-dependent terms that can be freely discarded. This still contains a logarithmic
dependence on R, but it could be removed by writing ln(R/R) = ln(R/r0) + ln(r0/R) and
discarding the second term. This alternative expression would then contain a dependence
on an arbitrary constant r0, and it is perhaps preferable to stick with the original form, in
spite of the residual R-dependence.

The final answer is obtained by inserting our expressions for f (τ ) and F within
Eq. (11.238). We get

h jk
W [0, 3] = 4G M

c4 R

{
− 6G

5c3

[
1 + ln(R/R)

]...
I

〈 jk〉 + 12

5
K jk

}
, (11.262)

in which the tail integral

K jk(τ, R) := G

c4

∫ ∞

0

(4)

I 〈 jk〉(τ − 2s/c) ln
R + s

s
ds (11.263)

must be left unevaluated. Note that the tail integral involves the entire past history of the
system, from the infinite past (at s = ∞) to the current retarded time (at s = 0). We shall
see what fate awaits the logarithmic term ln(R/R) in h jk

W [0, 3], when this contribution to
h jk

W is combined with others.
The same techniques are employed to calculate all other contributions to h jk

W . We shall
not labor through the details here, but simply list the final results:

h jk
W [0, 2] = 4G M

c4 R

{
−2K jk

}
, (11.264a)

h jk
W [0, 3] = 4G M

c4 R

{
− 6G

5c3

[
1 + ln(R/R)

]
...
I

〈 jk〉 + 12

5
K jk

}
, (11.264b)

h jk
W [0, 4] = 4G M

c4 R

{
6G

5c3

[
3

2
+ ln(R/R)

]
...
I

〈 jk〉 − 12

5
K jk

}
, (11.264c)

h jk
W [2, 3] = 4G M

c4 R

{
− 2G

7c3

...
I

j
p

}
N 〈pk〉 + ( j ↔ k), (11.264d)

h jk
W [2, 4] = 4G M

c4 R

{
− 3G

28c3

...
I

j
p

}
N 〈pk〉 + ( j ↔ k), (11.264e)

h jk
W [2, 5] = 4G M

c4 R

{
G

c3

[
47

700
+ 3

35
ln(R/R)

]
...
I

j
p − 6

35
K j

p

}
N 〈pk〉 + ( j ↔ k),

(11.264f)

h jk
W [2, 6] = 4G M

c4 R

{
G

c3

[
− 97

700
− 3

35
ln(R/R)

]
...
I

j
p + 6

35
K j

p

}
N 〈pk〉 + ( j ↔ k),

(11.264g)

h jk
W [4, 3] = 4G M

c4 R

{
G

20c3

...
I pq

}
N 〈 jkpq〉, (11.264h)

(continued overleaf)
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h jk
W [4, 4] = 4G M

c4 R

{
G

30c3

...
I pq

}
N 〈 jkpq〉, (11.264i)

h jk
W [4, 5] = 4G M

c4 R

{
G

42c3

...
I pq

}
N 〈 jkpq〉, (11.264j)

h jk
W [4, 6] = 4G M

c4 R

{
G

56c3

...
I pq

}
N 〈 jkpq〉. (11.264k)

To arrive at these results we have freely discarded all R-dependent terms, except when the
dependence is logarithmic. In some cases we have also removed terms that fall off as R−2,
R−3, or faster, because these are negligible in the far-away wave zone.

From the preceding listing of results we find that the sums of contributions for � = 0,
� = 2, and � = 4 are

h jk
W [� = 0] = 4G M

c4 R

{
3G

5c3

...
I

〈 jk〉 − 2K jk

}
, (11.265a)

h jk
W [� = 2] = 4G M

c4 R

{
− 13G

28c3

...
I

j
p N 〈pk〉 + ( j ↔ k)

}
, (11.265b)

h jk
W [� = 4] = 4G M

c4 R

{
G

8c3

...
I pq N 〈 jkpq〉

}
. (11.265c)

Note that the logarithmic terms have all canceled out, and that the tail integral K jk appears
only within the � = 0 contribution. Tracing the origin of the tail integral, we see that
it comes from τ jk[0, 2], the term in τ jk that involves four derivatives of the Newtonian
quadrupole moment. This term, the last one in Eq. (11.250), originates from (−g)t jk

H , and
as we have observed previously, it reveals the differences between the light cones of the
mathematical flat spacetime and those of the physical curved spacetime. The tail integral,
therefore, informs us that the gravitational waves are propagating in a curved spacetime
instead of the fictitious flat spacetime of post-Minkowskian theory.

Final answer

Adding the contributions from � = 0, � = 2, and � = 4, we find that the wave-zone piece
of the gravitational-wave field is given by

h jk
W = 4G M

c4 R

{
3G

5c3

...
I

〈 jk〉 − 2K jk − 13G

28c3

(
...
I

j
p N 〈pk〉 + ...

I
k
p N 〈pj〉

)
+ G

8c3

...
I pq N 〈 jkpq〉

}
.

(11.266)
From this we may remove any term that will not survive a TT projection. For example, we
may use

...
I

j
p N 〈pk〉 = ...

I
j
p

(
N p N k − 1

3
δ pk

)
tt= −1

3

...
I

〈 jk〉 (11.267)

and

...
I pq N 〈 jkpq〉 tt= 2

35

...
I

〈 jk〉 (11.268)
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to simplify the expression, which becomes

h jk
W

tt= 4G M

c4 R

{
11G

12c3

...
I

〈 jk〉 − 2K jk

}
. (11.269)

To arrive at the final form of Eq. (11.236), we substitute Eq. (11.263) for the tail integral
and clean things up by setting s = 1

2 c ζ , thereby adopting ζ as a new integration variable.
This gives us

h jk
W

tt= 4G2 M

c7 R

{
11

12

...
I

〈 jk〉(τ ) +
∫ ∞

0

(4)

I 〈 jk〉(τ − ζ ) ln
ζ

ζ + 2R/c
dζ

}
, (11.270)

and it is easy to show that this is equivalent to Eq. (11.236).

11.3.8 Summary: Gravitational-wave field

Our computation of the gravitational-wave field generated by an N -body system is now
essentially complete. For easy reference we copy in Box 11.4 the main results obtained in
the preceding five subsections.

Box 11.4 Gravitational-wave field to 1.5pn order

The gravitational potentials h jk are decomposed according to

h jk = h jk
N + h jk

W , (1)

and the near-zone piece is expressed as the multipole expansion

h jk
N (t, x) = 2G

c4 R

∂2

∂τ 2

{
Q jk + Q jka Na + Q jkab Na Nb + 1

3
Q jkabc Na Nb Nc

}
, (2)

inwhich R := |x|, N := x/R, andτ := t − R/c is retarded time. The radiativemultipolemoments
are given by

Q jk tt=
∑

A

MA

(
1 + 1

2

v2
A

c2

)
r j

Ark
A − 1

2c2

∑
A

∑
B 	=A

G MA MB

rAB
r j

Ark
A + O(c−4),

Q jka = A jka + Akja − Aajk,

A jka tt= 1

c

∑
A

MA

(
1 + v2

A

2c2

)
v

j
Ar k

Ara
A

− 1

2c3

∑
A

∑
B 	=A

G MA MB

rAB

[(
nAB · vA

)
n j

ABrk
Ara

A + v
j
Ar k

Ara
A

]

+ 1

2c3

∑
A

∑
B 	=A

G MA MB

[(
nAB · vA

)
n j

ABn(k
ABra)

A −7n j
ABv

(k
A ra)

A +7v
j
An(k

ABra)
A

]

(continued overleaf)
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− 1

6c3

∑
A

∑
B 	=A

G MA MBrAB

[(
nAB · vA

)
n j

ABnk
ABna

AB − 11n j
ABn(k

ABv
a)
A

+ 11v
j
Ank

ABna
AB

]
+ O(c−5),

Q jkab tt= 1

c2

∑
A

MAv
j
Avk

Ara
Arb

A

− 1

2c2

∑
A

∑
B 	=A

G MA MB

rAB
n j

ABnk
ABra

Arb
A

+ 1

12c2

∑
A

∑
B 	=A

G MA MBrABn j
ABnk

AB

(
na

ABnb
AB − δab

)+ O(c−4),

Q jkabc tt= 1

c3

∂

∂τ

[∑
A

MAv
j
Avk

Ara
Arb

Arc
A − 1

2

∑
A

∑
B 	=A

G MA MB

rAB
n j

ABnk
ABra

Arb
Arc

A

+ 1

4

∑
A

∑
B 	=A

G MA MBrABn j
ABnk

ABr (a
A

(
nb

ABnc)
AB −δbc)

)]
+O(c−5).

They are expressed in terms of the mass-energy MA of each body, its position r A , and velocity vA ; all po-
sition and velocity vectors are evaluated at the retarded time τ , and the radiative moments are functions
of τ only. We use rAB := |r A − r B | to denote the distance between bodies A and B , and nAB =
(r A − r B)/rAB is a unit vector that points from body B to body A. With this listing of radiative multi-
pole moments, the multipole expansion is accurate through 1.5pn order.
The wave-zone piece is given by the tail integral

h jk
W (t, x)

tt= 4G

c4 R

G M

c3

∫ ∞

0

(4)

I 〈 jk〉(τ − ζ )

(
ln

ζ

ζ + 2R/c
+ 11

12

)
dζ, (3)

which involves the entire past history of the system. It depends on the total gravitational mass of the system,
M =∑A MA + O(c−2), as well as the Newtonian quadrupole moment of the matter distribution,
I jk =∑A MAr j

Ark
A , which is made tracefree and differentiated four times with respect to its argument.

The wave-zone piece makes a contribution at 1.5pn order to the gravitational-wave field.

The computation is essentially complete, but much work remains to be done to turn these
expressions into something more concrete. First, the derivatives with respect to τ must
be evaluated, and this will require a large effort. Second, the projection to the transverse
subspace must be fully carried out, because our multipole moments still contain pieces that
can be removed by acting with (tt) jk

pq . The ultimate goal is to obtain the polarizations h+
and h× expressed entirely in terms of the positions r A and velocities vA. We shall proceed
toward this goal in the following section.
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11.4 Gravitational waves emitted by a two-body system

To simplify the task of producing concrete expressions for h+ and h×, we choose at this
stage to specialize our discussion to a binary system of orbiting bodies. The system will
therefore involve the masses M1 and M2, the positions r1 and r2, and the velocities v1 and
v2. The dynamics of the binary system is described by the post-Newtonian equations of
motion obtained back in Sec. 9.3.7.

11.4.1 Motion in the barycentric frame

We work in the post-Newtonian barycentric frame (R = 0), and according to Eqs. (9.141),
the position vector of each body is given by

r1 = M2

m
r + η�

2c2

(
v2 − Gm

r

)
r + O(c−4), (11.271a)

r2 = − M1

m
r + η�

2c2

(
v2 − Gm

r

)
r + O(c−4). (11.271b)

They are expressed in terms of the separation vector r := r12 := r1 − r2 and the relative
velocity v := v12 := v1 − v2; these have magnitudes r = |r| and v = |v|, respectively. We
have re-introduced the mass parameters

m := M1 + M2, (11.272a)

η := M1 M2

(M1 + M2)2
, (11.272b)

� := M1 − M2

M1 + M2
. (11.272c)

Differentiation of Eqs. (11.271) returns the velocity vector of each body:

v1 = M2

m
v + η�

2c2

[(
v2 − Gm

r

)
v − Gm

r
ṙn

]
+ O(c−4), (11.273a)

v2 = − M1

m
v + η�

2c2

[(
v2 − Gm

r

)
v − Gm

r
ṙn

]
+ O(c−4), (11.273b)

where ṙ := n · v is the radial component of the velocity vector, and n := r/r is a unit
vector that points from body 2 to body 1. To arrive at these expressions we have involved
the relative acceleration a := a1 − a2, which according to Eq. (9.142) is given by

a = −Gm

r2
n − Gm

c2r2

{[
(1 + 3η)v2 − 3

2
ηṙ2 − 2(2 + η)

Gm

r

]
n

− 2(2 − η)ṙ v

}
+ O(c−4). (11.274)
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11.4.2 Radiative multipole moments

We make the substitutions within the radiative multipole moments of Box 11.4 and simplify
the resulting expressions. The sums that appear in these equations must be specialized to
two bodies, and in these we set r12 = r21 = r and n12 = −n21 = n. In the course of these
(lengthy, but straightforward) computations we encounter various functions of M1 and M2

that can be rewritten in terms of the mass parameters of Eqs. (11.272). For example, it is
easy to show that

M2
1 + M2

2

(M1 + M2)2
= 1 − 2η, (11.275a)

M3
1 + M3

2

(M1 + M2)3
= 1 − 3η, (11.275b)

M4
1 − M4

2

(M1 + M2)4
= �(1 − 2η), (11.275c)

and we make many such substitutions while simplifying our expressions.
We obtain

Q jk = ηm

[
1 + 1

2
(1 − 3η)

v2

c2
− 1

2
(1 − 2η)

Gm

c2r
+ O(c−4)

]
r jr k, (11.276a)

Q jka = ηm�

c

{
r jr kva − (v j r k + r jvk

)
ra

−
[

1

2
(1 − 5η)

v2

c2
+ 1

6
(7 + 12η)

Gm

c2r

](
v j r k + r jvk

)
ra

+
[

1

2
(1 − 5η)

v2

c2
+ 1

6
(17 + 12η)

Gm

c2r

]
r jr kva

+ 1

6
(1 − 6η)

Gm

c2r
ṙ n jr kra + O(c−4)

}
, (11.276b)

Q jkab = ηm

c2

{
(1 − 3η)v jvkrarb − 1

3
(1 − 3η)

Gm

r
n j nkrarb

− 1

6

Gm

r
r jr kδab + O(c−2)

}
, (11.276c)

Q jkabc = ηm�

c3

∂

∂τ

{
−(1 − 2η)v jvkrarbrc + 1

4
(1 − 2η)

Gm

r
n j nkrarbrc

+ 1

4

Gm

r
r jr kr (aδbc) + O(c−2)

}
. (11.276d)

We observe that in order to simplify the writing, we have replaced the qualified equality
sign

tt= (“equal after a TT projection”) by the usual equality sign.
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11.4.3 Computation of retarded-time derivatives

The near-zone contribution to h jk is given by Eq. (2) of Box 11.4, and in this we must insert
the radiative multipole moments displayed in the preceding subsection; the computation
involves taking two retarded-time derivatives of these moments. Similarly, the wave-zone
contribution to h jk is given by Eq. (3) of Box 11.4, and this involves taking four retarded-
time derivatives of I jk = ηmr jrk . Our immediate task in this subsection is to compute
these derivatives.

The general strategy is clear. The radiative multipole moments of Eqs. (11.276) are
expressed explicitly in terms of the position and velocity vectors, and these are functions of
the retarded time τ . Differentiating with respect to τ therefore involves taking derivatives
of the position and velocity vectors. Differentiating r gives v, and differentiating v gives a,
the post-Newtonian acceleration vector of Eq. (11.274). After making this substitution, the
result is once more expressed in terms of r and v, and is ready for further differentiation.

More concretely, consider the task of computing Q̈ jk . The quadrupole moment is a
function of r at order c0, and a function of r and v at order c−2. Taking a first derivative
with respect to τ produces terms in r and v at order c0, and terms in r , v, and a at
order c−2. In the post-Newtonian term we can substitute the Newtonian expression for the
acceleration vector, a = −Gmr/r3 + O(c−2), because the error incurred occurs at order
c−4 in Q̇ jk . The end result is a function of r and v at order c0, another function of r and
v at order c−2, and neglected terms at order c−4. Taking a second derivative introduces the
acceleration vector at orders c0 and c−2. In the Newtonian term we must now substitute the
post-Newtonian expression for the acceleration vector, because its pn term will influence
the c−2 piece of Q̈ jk ; but we are still allowed to insert the Newtonian acceleration within
the c−2 piece of the second derivative. The end result for Q̈ jk is a function of r and v at
order c0, and another function of r and v at order c−2.

Derivatives of other multipole moments are computed in a similar way. These computa-
tions are tedious and lengthy, but they are completely straightforward. They are aided by
the identities

vv̇ = −Gm

r2
ṙ + O(c−2), rr̈ = v2 − ṙ2 − Gm

r
+ O(c−2), (11.277)

which are consequences of the Newtonian expression for the acceleration vector.
We display the final results:

Q̈ jk = 2ηm

(
v jvk − Gm

r
n j nk

)

+ ηm

c2

⎧⎪⎪⎪⎩
[
−1

2
(7 + 2η)v2 + 3

2
(1 − 2η)ṙ2 + 19

2

Gm

r

]
Gm

r
n j nk

+
[

(1 − 3η)v2 − (1 − 2η)
Gm

r

]
v jvk + (3 + 2η)

Gm

r
ṙ
(
v j nk + n jvk

)⎫⎪⎪⎪⎭
+ O(c−4), (11.278a)

(continued overleaf)
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Q̈ jka = ηm�

c

⎧⎪⎪⎪⎩−3
Gm

r
ṙ n j nkna + 3

Gm

r

(
v j nk + n jvk

)
na + Gm

r
n j nkva − 2v jvkva

⎫⎪⎪⎪⎭
+ ηm�

c3

⎧⎪⎪⎪⎩
[

3

2
(2 − η)v2 + 9

2
(1 + η)ṙ2 − 1

3
(31 − 9η)

Gm

r

]
Gm

r

(
v j nk + n jvk

)
na

− (15 + 2η)
Gm

r
ṙ v jvkna

+
[
−3

2
(4 − 3η)v2 + 5

2
(1 − 3η)ṙ2 + 2

3
(29 − 3η)

Gm

r

]
Gm

r
ṙ n j nkna

+
[

1

2
(4 − η)v2 − 3

2
(1 − η)ṙ2 − 1

3
(25 − 3η)

Gm

r

]
Gm

r
n j nkva

− (3 + 2η)
Gm

r
ṙ
(
v j nk + n jvk

)
va

+
[
−(1 − 5η)v2 + (1 − 4η)

Gm

r

]
v jvkva

⎫⎪⎪⎪⎭+ O(c−5), (11.278b)

Q̈ jkab = ηm

c2

⎧⎪⎪⎪⎩5(1 − 3η)
Gm

r
ṙ
(
v j nk + n jvk

)
nanb

+ (1 − 3η)

(
v2 − 5ṙ2 + 7

3

Gm

r

)
Gm

r
n j nknanb

− 14

3
(1 − 3η)

Gm

r
v jvknanb

− 8

3
(1 − 3η)

Gm

r

(
v j nk + n jvk

)(
vanb + navb

)
+ 2(1 − 3η)v jvkvavb + 2(1 − 3η)

Gm

r
ṙ n j nk

(
vanb + navb

)
− 2

3
(1 − 3η)

Gm

r
n j nkvavb + 1

6

Gm

r

(
v2 − 3ṙ2 + Gm

r

)
n j nkδab

+ 1

3

Gm

r
ṙ
(
v j nk + n jvk

)
δab − 1

3

Gm

r
v jvkδab

⎫⎪⎪⎪⎭+ O(c−4), (11.278c)

Q̈ jkabc = ηm�

c3

⎧⎪⎪⎪⎩−1

4
(1 − 2η)

(
21v2 − 105ṙ2 + 44

Gm

r

)
Gm

r

(
v j nk + n jvk

)
nanbnc

+ 1

4
(1 − 2η)

(
45v2 − 105ṙ2 + 90

Gm

r

)
Gm

r
ṙ n j nknanbnc

− 51

2
(1 − 2η)

Gm

r
ṙ v jvknanbnc

− 27

2
(1 − 2η)

Gm

r
ṙ
(
v j nk + n jvk

)(
vanbnc + navbnc + nanbvc

)
− 1

4
(1−2η)

(
9v2−45ṙ2 + 28

Gm

r

)
Gm

r
n j nk

(
vanbnc + navbnc + nanbvc

)
(continued overleaf)
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+ 29

2
(1 − 2η)

Gm

r
v jvk

(
vanbnc + navbnc + nanbvc

)
+ 15

2
(1 − 2η)

Gm

r

(
v j nk + n jvk

)(
vavbnc + vanbvc + navbvc

)
− 6(1 − 2η)v jvkvavbvc − 9

2
(1 − 2η)

Gm

r
ṙ n j nk

(
vavbnc + vanbvc + navbvc

)
+ 3

2
(1 − 2η)

Gm

r
n j nkvavbvc + 1

4

(
9v2 − 15ṙ2 + 10

Gm

r

)
Gm

r
ṙ n j nkn(aδbc)

− 1

4

(
3v2 − 9ṙ2 + 4

Gm

r

)
Gm

r

(
v j nk + n jvk

)
n(aδbc)

− 1

4

(
3v2 − 9ṙ2 + 4

Gm

r

)
Gm

r
n j nkv(aδbc)

− 3

2

Gm

r
ṙ v jvkn(aδbc) − 3

2

Gm

r
ṙ
(
v j nk + n jvk

)
v(aδcd)

+ 3

2

Gm

r
ṙ v jvkv(aδbc)

⎫⎪⎪⎪⎭+ O(c−5). (11.278d)

In addition, we have that

(4)

I jk = 2ηm
Gm

r3

[(
3v2 − 15ṙ2 + Gm

r

)
n j nk + 9ṙ

(
v j nk + n jvk

)− 4v jvk

]
+ O(c−2). (11.279)

11.4.4 Gravitational-wave field

We may now substitute Eqs. (11.278) and (11.279) into Eqs. (2) and (3) of Box 11.4 and
obtain the gravitational-wave field. These computations are straightforward, and we express
the result as

h jk(t, x) = 2ηGm

c4 R

[
A jk[0pn] + A jk[0.5pn] + A jk[1pn]

+ A jk[1.5pn] + A jk[tail] + O(c−4)

]
, (11.280)

in which we group terms according to their post-Newtonian order (the last term, with the
label “tail,” is also of 1.5pn order). We have

A jk[0pn] = 2
⎧⎪⎩v jvk − Gm

r
n j nk

⎫⎪⎭ , (11.281a)

A jk[0.5pn] = �

c

⎧⎪⎩3
Gm

r
(n · N)

(
v j nk + n jvk − ṙ n j nk

)
+ (v · N)

(
−2v jvk + Gm

r
n j nk

)⎫⎪⎭ , (11.281b)

(continued overleaf)
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A jk[1pn] = 1

c2

⎧⎪⎪⎪⎩1

3

[
3(1 − 3η)v2 − 2(2 − 3η)

Gm

r

]
v jvk

+ 2

3
(5 + 3η)

Gm

r
ṙ
(
v j nk + n jvk

)
+ 1

3

Gm

r

[
−(10 + 3η)v2 + 3(1 − 3η)ṙ2 + 29

Gm

r

]
n j nk

+ 2

3
(1 − 3η)(v · N)2

(
3v jvk − Gm

r
n j nk

)

+ 4

3
(1 − 3η)(v · N)(n · N)

Gm

r

[
−4
(
v j nk + n jvk

)+ 3ṙ n j nk

]

+ 1

3
(1 − 3η)(n · N)2 Gm

r

[
−14v jvk + 15ṙ

(
v j nk + n jvk

)
+
(

3v2 − 15ṙ2 + 7
Gm

r

)
n j nk

]⎫⎪⎪⎪⎭ , (11.281c)

A jk[1.5pn] = �

c3

⎧⎪⎪⎪⎩ 1

12
(v · N)

{
−6

[
2(1 − 5η)v2 − (3 − 8η)

Gm

r

]
v jvk

− 6(7 + 4η)
Gm

r
ṙ
(
v j nk + n jvk

)
+ Gm

r

[
3(7 − 2η)v2 − 9(1 − 2η)ṙ2 − 4(26 − 3η)

Gm

r

]
n j nk

}

+ 1

12
(n · N)

Gm

r

{
−6(31 + 4η)ṙ v jvk

+
[

3(11 − 6η)v2 + 9(7 + 6η)ṙ2 − 4(32 − 9η)
Gm

r

](
v j nk + n jvk

)
− ṙ

[
9(7 − 6η)v2 − 15(1 − 6η)ṙ2 − 2(121 − 12η)

Gm

r

]
n j nk

}

+ 1

2
(1 − 2η)(v · N)3

{
−4v jvk + Gm

r
n j nk

}

+ 3

2
(1 − 2η)(v · N)2(n · N)

Gm

r

{
5
(
v j nk + n jvk

)− 3ṙ n j nk
}

+ 1

4
(1 − 2η)(v · N)(n · N)2 Gm

r

{
58v jvk − 54ṙ

(
v j nk + n jvk

)
−
[

9v2 − 45ṙ2 + 28
Gm

r

]
n j nk

}

+ 1

12
(1 − 2η)(n · N)3 Gm

r

{
−102ṙ v jvk

−
[

21v2 − 105ṙ2 + 44
Gm

r

](
v j nk + n jvk

)
+ 15ṙ

[
3v2 − 7ṙ2 + 6

Gm

r

]
n j nk

}⎫⎪⎪⎪⎭ , (11.281d)

(continued overleaf)
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A jk[tail] = 4Gm

c3

∫ ∞

0

⎧⎪⎪⎪⎩Gm

r3

[(
3v2 − 15ṙ2 + Gm

r

)
n j nk + 9ṙ

(
v j nk + n jvk

)

− 4v jvk

]⎫⎪⎪⎪⎭
τ−ζ

[
ln

(
ζ

ζ + 2R/c

)
+ 11

12

]
dζ . (11.281e)

The gravitational-wave field is expressed in terms of the separation vector r = r1 − r2, the
relative velocity v = v1 − v2, the radial velocity ṙ = n · v, and the mass parameters m =
M1 + M2, η = M1 M2/m2, and � = (M1 − M2)/m. In addition, h jk depends on distance
R := |x|, retarded time τ = t − R/c, and on the angular vector N := x/R that specifies
the direction from the barycenter to the field point x. In the tail integral the terms within
the large round brackets are evaluated at τ − ζ instead of τ , and the integration from ζ = 0
to ζ = −∞ involves the entire past history of the two-body system.

11.4.5 Polarizations

Our final task is to carry out the projection to the transverse subspace, and extract the
gravitational-wave polarizations

h+,× = 2ηGm

c4 R

[
A+,×[0pn] + A+,×[0.5pn] + A+,×[1pn]

+ A+,×[1.5pn] + A+,×[tail] + O(c−4)

]
(11.282)

from Eq. (11.280). We adopt the same conventions as in Sec. 11.2.2. We re-introduce the
“orbit-adapted” coordinate system (x, y, z) and express n in terms of φ(τ ), the (retarded)
angular position of the relative orbit. The expression is n = [cos φ, sin φ, 0], and to this
we adjoin another basis vector λ = [− sin φ, cos φ, 0], which also lies in the fixed orbital
plane. We express the relative position and velocity vectors as

r = r n, v = ṙ n + r φ̇ λ, (11.283)

where r (τ ) is the (retarded) distance between the two bodies. And we re-introduce the
directions

eX = [cos ω,− sin ω, 0], (11.284a)

eY = [cos ι sin ω, cos ι cos ω,− sin ι], (11.284b)

eZ = [sin ι sin ω, sin ι cos ω, cos ι] = N, (11.284c)

which depend on the polar angles (ι, ω) that specify the direction of the detector relative to
the (x, y, z) system. We use eX and eY as a vectorial basis in the subspace transverse to the
direction of propagation, and let

h+ = 1

2

(
e j

X ek
X − e j

Y ek
Y

)
h jk, (11.285a)

h× = 1

2

(
e j

X ek
Y + e j

Y ek
X

)
h jk, (11.285b)
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denote the gravitational-wave polarizations. The construction extends to each A+ and A×
defined by Eq. (11.282).

The manipulations that return h+ and h× from Eqs. (11.280) and (11.281) are straight-
forward, but as usual they are long and tedious. The expressions that result from A jk[0pn]
are simple, and they can easily be displayed here:

A+[0pn] = 1

2

[
ṙ2 + (r φ̇)2 − (G M/r )

]
S2

+ 1

2

[
ṙ2 − (r φ̇)2 − (G M/r )

]
(1 + C2) cos 2ψ

− ṙ (r φ̇)(1 + C2) sin 2ψ, (11.286a)

A×[0pn] = [ṙ2 − (r φ̇)2 − (G M/r )
]
C sin 2ψ + 2ṙ (r φ̇)C cos 2ψ, (11.286b)

where S := sin ι, C := cos ι, and ψ := φ(τ ) + ω. The polarizations associated with
A jk[tail] are also relatively simple:

A+[tail] = Gm

c3
S2
∫ ∞

0

⎧⎪⎪⎪⎩Gm

r3

[
2ṙ2 − (r φ̇)2 + (G M/r )

]⎫⎪⎪⎪⎭
τ−ζ

� dζ

+ Gm

c3
(1 + C2)

∫ ∞

0

⎧⎪⎪⎪⎩Gm

r3

[
2ṙ2 + 7(r φ̇)2 + (G M/r )

]
cos 2ψ

⎫⎪⎪⎪⎭
τ−ζ

� dζ

− 10
Gm

c3
(1 + C2)

∫ ∞

0

⎧⎪⎪⎪⎩Gm

r3
ṙ (r φ̇) sin 2ψ

⎫⎪⎪⎪⎭
τ−ζ

� dζ, (11.287a)

A×[tail] = 2
Gm

c3
C

∫ ∞

0

⎧⎪⎪⎪⎩Gm

r3

[
2ṙ2 + 7(r φ̇)2 + (G M/r )

]
sin 2ψ

⎫⎪⎪⎪⎭
τ−ζ

� dζ

+ 20
Gm

c3
C

∫ ∞

0

⎧⎪⎪⎪⎩Gm

r3
ṙ (r φ̇) cos 2ψ

⎫⎪⎪⎪⎭
τ−ζ

� dζ, (11.287b)

where

� := ln

(
ζ

ζ + 2R/c

)
+ 11

12
. (11.288)

The expressions for the remaining polarizations are much, much larger, and we shall not
display them here.

11.4.6 Specialization to circular orbits

Circular motion

In this subsection we make a further specialization to circular orbital motion. This is defined
by the condition

ṙ = 0, (11.289)

so that the two bodies move while maintaining a constant relative separation. This is
undoubtedly a restriction on all possible motions, but more than this, Eq. (11.289) is also
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an approximation, because as the system loses energy to gravitational radiation (an effect
examined in Chapter 12), the orbital separation slowly decreases, and ṙ should actually
be negative even for orbits that are otherwise circular. But because this radiation-reaction
effect appears at 2.5pn order in the equations of motion, we are justified to neglect it here.

The post-Newtonian motion of a binary system in circular orbit was described back in
Sec. 10.1.2. There we showed that the angular velocity � := φ̇ of an orbit of radius r is a
constant given by

�2 = Gm

r3

[
1 − (3 − η)

Gm

c2r
+ O(c−4)

]
. (11.290)

This is a post-Newtonian generalization of the usual Keplerian relation �2 = Gm/r3.
(When radiation-reaction effects are included, r slowly decreases, and this causes � to
slowly increase.) It follows that the orbital velocity v = r� is given by

v2 = Gm

r

[
1 − (3 − η)

Gm

c2r
+ O(c−4)

]
. (11.291)

Post-Newtonian expansion parameter

The post-Newtonian expansion of the gravitational-wave field is formally an expansion in
powers of c−1, but physically it is an expansion in powers of a dimensionless quantity such
as v/c. There are many such quantities that could be adopted as an expansion parameter.
Equations (11.290) and (11.291) suggest, for example, that

√
Gm/(c2r ) could be selected,

and this would indeed be a valid substitute for v/c. Another choice is

β :=
(

Gm�

c3

)1/3

, (11.292)

which has the important advantage of being defined in terms of the orbital frequency �. As
we shall see below, � is intimately related to the frequency of the gravitational waves, and
it can therefore be measured directly. This is unlike v or r , which are coordinate-dependent
variables that cannot be measured. It is easy to show, using Eqs. (11.290) and (11.291), that

v/c = β

[
1 − 1

3
(3 − η)β2 + O(β4)

]
(11.293)

and

Gm

c2r
= β2

[
1 + 1

3
(3 − η)β2 + O(β4)

]
. (11.294)

We shall henceforth adopt β as a meaningful post-Newtonian parameter, and re-express the
gravitational-wave polarizations of Eq. (11.282) as expansions in powers of β.

Gravitational-wave polarizations

The polarizations produced by a binary system in circular orbit are obtained by following
the general recipe described in Sec. 11.4.5, making use of Eqs. (11.289), (11.293), and
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(11.294). After expanding in powers of β and evaluating the tail integrals (as detailed
below), we arrive at

h+,× = 2ηGm

c2 R

(
Gm�

c3

)2/3

H+,×, (11.295a)

H+,× := H [0]
+,× + �βH [1/2]

+,× + β2 H [1]
+,× + �β3 H [3/2]

+,× + β3 H tail
+,× + O(β4), (11.295b)

where

H [0]
+ = −(1 + C2) cos 2�, (11.296a)

H [1/2]
+ = −1

8
S(5 + C2) cos � + 9

8
S(1 + C2) cos 3�, (11.296b)

H [1]
+ = 1

6

[
(19 + 9C2 − 2C4) − (19 − 11C2 − 6C4)η

]
cos 2�

− 4

3
(1 − 3η)S2(1 + C2) cos 4�, (11.296c)

H [3/2]
+ = 1

192
S
[
(57 + 60C2 − C4) − 2(49 − 12C2 − C4)η

]
cos �

− 9

128
S
[
(73 + 40C2 − 9C4) − 2(25 − 8C2 − 9C4)η

]
cos 3�

+ 625

384
(1 − 2η)S3(1 + C2) cos 5�, (11.296d)

H tail
+ = −4(1 + C2)

{
π

2
cos 2� + [γ + ln(4�R/c)

]
sin 2�

}
, (11.296e)

and

H [0]
× = −2C sin 2�, (11.297a)

H [1/2]
× = −3

4
SC sin � + 9

4
SC sin 3�, (11.297b)

H [1]
× = 1

3
C
[
(17 − 4C2) − (13 − 12C2)η

]
sin 2�

− 8

3
(1 − 3η)S2C sin 4�, (11.297c)

H [3/2]
× = 1

96
SC
[
(63 − 5C2) − 2(23 − 5C2)η

]
sin �

− 9

64
SC
[
(67 − 15C2) − 2(19 − 15C2)η

]
sin 3�

+ 625

192
(1 − 2η)S3C sin 5�, (11.297d)

H tail
× = −8C

{
π

2
sin 2� − [γ + ln(4�R/c)

]
cos 2�

}
, (11.297e)

where

� := φ + ω = �(t − R/c) + ω. (11.298)
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Fig. 11.4 The polarizations H+ and H× as functions of retarded time τ , in units of the orbital period P. The curves are displayed
for a mass ratio M1/M2 = 10, a post-Newtonian parameterβ = 0.4, an inclination angle ι = 85◦, and a
longitude of pericenterω = 0◦.

We recall that m = M1 + M2, η = M1 M2/m2, � = (M1 − M2)/m, C := cos ι, and S :=
sin ι. Equations (11.296) and (11.297) imply that at leading order in a post-Newtonian ex-
pansion, the gravitational wave oscillates at twice the orbital frequency; the post-Newtonian
corrections contribute additional frequencies and the signal is therefore modulated. See
Fig. 11.4 for an illustration.

The tail terms listed in Eqs. (11.296) and (11.297) are interesting. They involve the math-
ematical constants π and γ � 0.5772 (Euler’s number), and they also involve a logarithmic
term that depends on �R/c. The tail terms are best interpreted as giving rise to a correction
to �, the quantity that determines the phase of the gravitational wave. Indeed, it is a simple
matter to show that the Newtonian and tail contributions to h+ and h× can be combined
and expressed as

H [0]
+ + β3 H tail

+ = −(1 + C2)
(
1 + 2πβ3

)
cos 2�∗, (11.299a)

H [0]
× + β3 H tail

× = −2C
(
1 + 2πβ3

)
sin 2�∗. (11.299b)

These expressions involve an amplitude correction equal to 2πβ3, and a new phase function
given by

�∗ = � − 2β3
[
γ + ln(4�R/c)

] = �

(
t − R/c − 2Gm

c3
ln

4�R

c
+ constant

)
.

(11.300)

It is this shifted phase function that informs us, at long last, that the radiation propagates not
along the mathematical light cones of Minkowski spacetime, but along the true, physical
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light cones of a curved spacetime. Indeed, the logarithmic term in Eq. (11.300) represents
the familiar Shapiro time delay, the extra time required by a light wave, or a gravitational
wave, to climb up a gravitational potential well created by a distribution of matter with total
mass m. This effect was studied back in Sec. 10.2.5, and apart from irrelevant constant
factors, the term (2Gm/c3) ln R can be seen to originate from Eq. (10.100), in the special
case in which the wave travels in the radial direction, so that robs + robs · k = 2robs.

Evaluation of the tail integrals

We must still evaluate the tail integrals, and show that they lead to the results displayed in
Eqs. (11.296) and (11.297). We start with Eqs. (11.287), which we specialize to circular
orbits by involving Eqs. (11.289), (11.293), and (11.294). After conversion to the notation
of Eq. (11.295), we find that

H tail
+ = 8(1 + C2)�

∫ ∞

0
cos(2� − 2�ζ )

[
ln

ζ

ζ + 2R/c
+ 11

12

]
dζ, (11.301a)

H tail
× = 16C�

∫ ∞

0
sin(2� − 2�ζ )

[
ln

ζ

ζ + 2R/c
+ 11

12

]
dζ. (11.301b)

To evaluate this we change the variable of integration to y := 2�ζ and introduce k :=
4�R/c to simplify the notation. The tail integrals become

H tail
+ = 4(1 + C2)

∫ ∞

0
cos(2� − y)

[
ln

y

y + k
+ 11

12

]
dy, (11.302a)

H tail
× = 8C

∫ ∞

0
sin(2� − y)

[
ln

y

y + k
+ 11

12

]
dy. (11.302b)

Expanding the trigonometric functions, this is

H tail
+ = 4(1 + C2)

(
Jc cos 2� + Js sin 2�

)
, (11.303a)

H tail
× = 8C

(
Jc sin 2� − Js cos 2�

)
, (11.303b)

where

Jc :=
∫ ∞

0
cos(y)

[
ln

y

y + k
+ 11

12

]
dy, (11.304a)

Js :=
∫ ∞

0
sin(y)

[
ln

y

y + k
+ 11

12

]
dy. (11.304b)

These integrals are ill-defined, because the function within square brackets behaves as
11
12 − k/y for large y, and the constant term prevents the convergence of each integral.
This, however, is an artificial problem that comes as a consequence of our (unphysical)
approximation � = constant. In reality, the two-body system undergoes radiation reaction,
and � slowly decreases as ζ increases toward ∞. (Recall that r decreases as time increases,
which causes � to increase as time increases; but recall also that the tail term integrates
towards the past, so that � decreases as ζ increases.) This effect does not alter substantially
the logarithmic portion of the integral, but it is sufficient to ensure the convergence of the
constant term.
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The integrals can be defined properly by inserting a convergence factor within the inte-
grand. Alternatively, and this practice is consistent with what was done back in Sec. 11.3.7,
we can integrate by parts and simply discard an ambiguous (and unphysical) boundary term
at y = ∞. Proceeding along those lines, we find that our integrals are equivalent to

Jc = −
∫ ∞

0

k sin y

y(y + k)
dy, (11.305a)

Js =
∫ ∞

0

k(cos y − 1)

y(y + k)
dy, (11.305b)

which are well defined. They can even be evaluated in closed form:

Jc = −π

2
+ π

2
cos k + Ci(k) sin k − Si(k) cos k

= −π

2
+ O(k−1), (11.306a)

Js = −γ − ln k − π

2
sin k + Ci(k) cos k + Si(k) sin k

= −γ − ln k + O(k−2), (11.306b)

where γ is Euler’s constant, Ci(k) is the cosine integral, and Si(k) is the sine integral (defined,
for example, in Sec. 5.2 of Abramowitz and Stegun’s Handbook of mathematical functions
(1975)). The approximate forms neglect terms of order k−1 = (4�R/c)−1 ∼ (λc/R) and
smaller, and these are small by virtue of the fact that the gravitational-wave field is evaluated
in the far-away wave zone, where R � λc.

Collecting results, we find that

H tail
+ = −4(1 + C2)

{
π

2
cos 2� + [γ + ln(4�R/c)

]
sin 2�

}
, (11.307a)

H tail
× = −8C

{
π

2
sin 2� − [γ + ln(4�R/c)

]
cos 2�

}
, (11.307b)

and these expressions have already been presented in Eqs. (11.296) and (11.297).

11.4.7 Beyond 1.5pn order

The calculations of this section were long and arduous, but as it turns out, they were merely
child’s play. At the time of writing, the gravitational waves for binary systems in circular
motion have been calculated all the way out to 3.5pn order, and this is a much, much
larger challenge. At 2pn order, for example, one finds not only the expected “standard”
corrections of order β4, but also tail contributions generated by the 0.5pn order terms.
At 2.5pn order one finds tails generated by the 1pn terms, 1pn corrections to the 1.5pn

tail terms, as well as standard 2.5pn terms. At 3pn order there are, in addition to the
standard terms, tails generated by the normal 1.5pn terms, 1.5pn corrections to the 1.5pn

tail terms, and completely new “tails of tails” terms: tails generated by the 1.5pn tails. These
formidable calculations have been carried out by a number of groups around the world, at
an enormous cost of labor and sweat (perhaps even blood). There was a strong motivation
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behind this large effort: the measurement by laser interferometric detectors of gravitational
waves emitted by compact binary systems involving neutron stars or black holes relies in
an essential way on these very accurate theoretical predictions, which allow the extremely
weak signals to be distinguished from noise. Data analysis relies on a bank of templates
constructed from these waveforms, and cross-correlation of the detector output with the
templates can reveal a signal that would otherwise be lost in the noisy data stream. In this
way theorists, who build the templates, work hand in hand with experimentalists, who build
the detectors, toward the successful measurement of gravitational waves.

11.5 Gravitational waves and laser interferometers

Thus far, in this long chapter on gravitational waves, we have said very little about the
actual detection of these waves, and indeed we intend to leave it that way. The attempts to
detect gravitational waves, from the pioneering experiments carried out by Joseph Weber
in the 1960s and 1970s using suspended cylinders of aluminum, to the present international
effort involving laser interferometry, pulsar timing, and cosmic microwave background
observations, is a story rich in sociology, history, technological development, and big-
science politics. But it is not the main focus of this book. We refer readers who wish to
learn more about the detection aspects to a number of excellent resources, listed at the end
of this chapter.

Having come this far, however, and having produced the waveforms h+ and h× in a
ready-to-use form for various sources and in various approximations, our coverage would
seem incomplete if we did not make some attempt to connect them with the output of
a gravitational-wave detector. It therefore seems appropriate to conclude this chapter by
showing how h+ and h× can be measured in one of the leading approaches to gravitational-
wave detection, laser interferometry.

In its most schematic realization, a laser interferometric gravitational-wave detector
works just like the interferometer used by Michelson in the late 1800s to measure the
speed of light and search for evidence of an “aether.” The real-life interferometers at the
Earth-based LIGO, Virgo, Geo600, and KAGRA observatories, and the one envisioned for
a space-based detector (known in 2013 as eLISA), are much more sophisticated than this,
but this simple model is adequate and captures the essential physics.

A laser interferometer consists of a laser source, a beam splitter, and two end mirrors
mounted on test masses imagined to be freely moving in spacetime (although in reality
they can be suspended by thin wires). The arms of the interferometers are taken to be
perpendicular to each other, although as we shall see, this is not an essential feature of the
design. The laser beam is divided in two at the beam splitter, and each beam travels along
one arm of the interferometer, reflects off the test mass, and returns to the beam splitter to
be recombined with the other beam. The relative phase of the beams determines whether
they produce a bright or dark spot when the recombined beam is measured by a photon
detector. Since the initial phases at the beam splitter are identical, the phase difference ��
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depends on the difference in travel time along the two arms. We can write

�� = 2πν(2L1/c − 2L2/c) , (11.308)

where ν is the frequency of the laser light, L1 and L2 are the armlengths, and 2L1/c and
2L2/c are the travel times along each arm (forward and back).

With the origin of the coordinate system placed at the beam splitter, the test mass at
the end of the first arm is at a position ξ 1(t), and the test mass at the end of the second
arm is at ξ 2(t). In the absence of a gravitational wave, the arms would have equal lengths,
and we would have ξ 1 = L0e1 and ξ 2 = L0e2, in which L0 is the unperturbed length of
each arm, and e1, e2 are unit vectors pointing in the direction of each arm. In the presence
of a gravitational wave, the position of each test mass varies with time. Assuming that
the armlength L0 is much shorter than the wavelength λ of the gravitational wave, the
displacement is described by Eq. (11.29), and we have

ξ
j

1 = L0

(
e j

1 + 1

2
h jk

TTek
1

)
, (11.309a)

ξ
j

2 = L0

(
e j

2 + 1

2
h jk

TTek
2

)
. (11.309b)

The length of each arm is then given by

L1 = L0

(
1 + 1

2
h jk

TTe j
1ek

1

)
, (11.310a)

L2 = L0

(
1 + 1

2
h jk

TTe j
2ek

2

)
, (11.310b)

to first order in h jk
TT, and the phase difference at beam recombination is

�� = 4πνL0

c

1

2

(
e j

1ek
1 − e j

2ek
2

)
h jk

TT. (11.311)

If we express the gravitational-wave field as in Eq. (11.6), h jk = (G/c4 R)A jk , this is

�� = 4πνGL0

c5 R
S(t), (11.312)

in which

S(t) = 1

2

(
e j

1ek
1 − e j

2ek
2

)
A jk

TT(τ, N) (11.313)

is the detector’s response function. We recall that R is the distance to the source, that N is a
unit vector pointing from the source to the detector, and that τ := t − R/c is retarded time.

To calculate S(t) we decompose A jk
TT in a transverse basis formed by the unit vectors eX

and eY , which are perpendicular to the direction of propagation eZ = N . This decompo-
sition was detailed back in Sec. 11.1.7, and we use the notation introduced in Sec. 11.2.2.
We have that

A jk
TT = (e j

X ek
X − e j

Y ek
Y

)
A+ + (e j

X ek
Y + e j

Y ek
X

)
A×, (11.314)
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e1

e2

e3
e′1

e′2

e′3

eX

eY

θ

φ

ψ

e′1

e′2

Fig. 11.5 Relation between the detector basis (e1, e2) and the transverse basis (eX, eY ).

and substitution within Eq. (11.313) produces

S(t) = F+ A+(t − R/c) + F× A×(t − R/c), (11.315)

in which

F+ := 1

2

(
e j

1ek
1 − e j

2ek
2

)(
e j

X ek
X − e j

Y ek
Y

)
, (11.316a)

F× := 1

2

(
e j

1ek
1 − e j

2ek
2

)(
e j

X ek
Y + e j

Y ek
X

)
, (11.316b)

are the detector pattern functions of the laser interferometer, which describe the angular
response of the detector to each gravitational-wave polarization. Note that in general, the
detector measures a linear superposition of the gravitational-wave polarizations.

To calculate F+ and F× we must relate the detector basis e1 and e2 to the transverse
basis eX and eY . We imagine that when viewed from the detector’s vantage point, the
source of gravitational waves is situated in a direction −N = [sin θ cos φ, sin θ sin φ, cos θ ],
described by polar angles (θ, φ) defined relative to the detector basis. The vectors (e1, e2, e3)
can then be related to (eX , eY , eZ ) by a sequence of simple operations illustrated in Fig. 11.5.
From the detector basis we first form an intermediate basis (e′

1, e′
2, e′

3) by performing two
elementary rotations. The first is a rotation by an angle φ around the e3-axis, to align the
rotated e1-axis in the direction of −N projected down to the 1-2 plane. The second is a
rotation by an angle θ around the new e2-axis, to align the rotated e3-axis in the direction
of −N . It is easy to show that the detector basis is related to the intermediate basis by

e1 = cos θ cos φ e′
1 − sin φ e′

2 + sin θ cos φ e′
3, (11.317a)

e2 = cos θ sin φ e′
1 + cos φ e′

2 + sin θ sin φ e′
3, (11.317b)

e3 = − sin θ e′
1 + cos θ e′

3. (11.317c)

The vectors e′
1 and e′

2 are transverse to the direction of propagation N = −e′
3, but they

are not equal to the transverse vectors eX and eY . Indeed, these vectors will in general be
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related by a rotation of angle ψ around N – recall the discussion surrounding Eq. (11.41).
This rotation is described by

e′
1 = cos ψ eX + sin ψ eY , (11.318a)

e′
2 = sin ψ eX − cos ψ eY , (11.318b)

e′
3 = −eZ , (11.318c)

and we see that the transformation also includes a reflection across the transverse plane,
to bring the third axis in alignment with the direction of propagation. Since each vectorial
basis must be right-handed, we get an unusual orientation of the eY vector relative to e′

2.
The combined transformation is

e1 = (cos θ cos φ cos ψ − sin φ sin ψ) eX + (cos θ cos φ sin ψ + sin φ cos ψ) eY

− sin θ cos φ eZ , (11.319a)

e2 = (cos θ sin φ cos ψ + cos φ sin ψ) eX + (cos θ sin φ sin ψ − cos φ cos ψ) eY

− sin θ sin φ eZ , (11.319b)

e3 = − sin θ cos ψ eX − sin θ sin ψ eY − cos θ eZ , (11.319c)

and making the substitutions in Eq. (11.316) returns

F+ = 1

2
(1 + cos2 θ ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ, (11.320a)

F× = 1

2
(1 + cos2 θ ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ, (11.320b)

after simplification. We see that there are directions in the sky, for example θ = π
2 and

φ = π
4 , for which the laser interferometer is unable to detect any wave.

Measurement of gravitational waves with laser interferometry does not require the arms
to be perpendicular to each other, as we have taken them to be in this discussion. For the
proposed space-based eLISA interferometer, for example, the angle between the arms will
be 60o. In fact, it can be shown (see Exercise (11.8) that for an interferometer whose arms
make an angle χ , the response function S(t) is the same as in Eqs. (11.315) and (11.320),
but with the overall response reduced by a factor of sin χ . This simple result follows when
the arms are oriented symmetrically in the laboratory basis, so that each arm makes the
same angle π

4 − 1
2χ with respect to the e1 and e2 axes.

11.6 Bibliographical notes

The physics of gravitational waves features a wealth of aspects that could not all be covered
in this book, even in such a long chapter. For a more comprehensive treatment the reader
is invited to consult the few books devoted entirely to this rich subject, including Saulson
(1994), Maggiore (2007), and Creighton and Anderson (2011).

The quadrupole-formula controversy described in Box 11.2 is related in much more
detail in Daniel Kennefick’s wonderful book Traveling at the Speed of Thought, published

cmw
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in 2007; the phrase is due to Eddington (1922), who was referring specifically to the
unphysical gauge modes contained in the theory. The Einstein–Rosen paper eventually
appeared in 1937 in the Journal of the Franklin Institute, a publication that specializes in
engineering and applied mathematics; the identity of the mysterious Physical Review referee
was finally revealed by Kennefick in his 2005 Physics Today article. Another reference cited
in Box 11.2 is Ehlers et al. (1976), and a useful summary of the controversy is presented in
Walker and Will (1980).

The gravitational-wave polarizations corresponding to a binary system in eccentric mo-
tion (Sec. 11.2.2) were first calculated by Wahlquist (1987). The elastic deformation of
a neutron star and its potential for gravitational-wave emissions (Sec. 11.2.3) has been
investigated by a number of researchers; representative papers are Ushomirsky, Cutler and
Bildsten (2000) and Owen (2005). Gravitational waves produced during tidal encounters
(Sec. 11.2.4) were first studied by Turner (1977) and Will (1983).

Wagoner and Will (1976) were the first to calculate the post-Newtonian corrections to
the gravitational-wave signal of a binary system, though with considerably less rigor than
displayed in Secs. 11.3 and 11.4. Our calculations are patterned after Will and Wiseman
(1996), who actually carry them out through second post-Newtonian order; the final results
for the polarizations h+ and h× (through 2pn order) are neatly presented in Blanchet
et al. (1996). Higher-order post-Newtonian calculations are reviewed in Blanchet (2006),
and at the time of writing, the most recent results on 3.5pn waveforms were obtained by Faye
et al. (2012).

The physics of gravitational-wave detectors, touched upon ever so briefly in Sec. 11.5, is
described much more thoroughly in Saulson (1994), Maggiore (2007), and Creighton and
Anderson (2011). A nice introduction to the workings of a laser interferometric detector is
provided by Black and Gutenkunst (2003).

11.7 Exercises

11.1 Consider a gravitational-wave field hαβ in the far-away wave zone, satisfying the
harmonic gauge condition. Prove by direct calculation that

R0 j0k = − 1

2c2
(tt) jk

pq∂ττ h pq .

11.2 We know that in the far-away wave zone, the effective energy-momentum pseudoten-
sor falls off at least as fast as R−2. Thus we can write the relaxed Einstein equation
in harmonic gauge in the form

�hαβ = O(R−2) .

Show that the general solution of this equation is given by

hαβ = Aαβ(τ, N)

R
+ O(R−2) ,

cmw
Sticky Note
This was already stated above,  Do we dare delete it?



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-11 CUUK2552-Poisson 978 1 107 03286 6 December 16, 2013 11:7

620 Gravitational waves

where Aαβ is an arbitrary function of τ = t − R/c and the unit vector N . Show that
the harmonic gauge condition ∂βhαβ = 0 gives rise to the constraint

∂τ Aα0 − N j∂τ Aα j = O(R−1) .

11.3 An alternative way to study the polarizations of gravitational waves in the far-away
wave zone is to focus on the Riemann tensor, and to exploit the fact that the waves,
to lowest order in post-Minkowskian theory, propagate along null directions with
respect to the background Minkowski spacetime. The idea, following Ted Newman
and Roger Penrose, is to express the components of Rαβγ δ on a basis of complex null
vectors, defined by

�α := (1, N) , nα := 1
2 (1,−N) ,

mα := 1√
2
(0,ϑ + iϕ) , m̄α := 1√

2
(0,ϑ − iϕ) .

Here �α is an outgoing null vector tangent to the gravitational waves, nα is an
ingoing null vector, and ϑ and ϕ are defined as in Eqs. (11.37) and (11.38). Complex
conjugation converts mα to m̄α and vice versa.
(a) Prove the following properties of the basis vectors:

�α = −c∂α(t − R/c) , nα = − c
2∂α(t + R/c) ,

�α�α = nαnα = mαmα = m̄αm̄α = 0 ,

�αnα = −1 , mαm̄α = 1 ,

ηαβ = −2�(αnβ) + 2m(αm̄β) .

(b) Assume that the Riemann tensor in the far-away wave zone can be expressed as
Rαβγ δ = Aαβγ δ/R + O(R−2), in which Aαβγ δ is an arbitrary function of retarded
time τ := t − R/c and the unit vector N . Show that

∂μ Rαβγ δ = −1

c
�μ∂τ Rαβγ δ + O(R−2) .

(c) Making use of this differentiation rule, use the linearized Bianchi identities

∂ε Rαβγ δ + ∂δ Rαβεγ + ∂γ Rαβδε = 0

to show that only the six components Rnpnq can be non-zero, where the indices
(p, q) run over the values �, m, and m̄. In this notation, for example, Rn�n� stands
for Rαβγ δnα�βnγ �δ . You may ignore any constant of integration that arises when
integrating with respect to retarded time.

(d) Calculate the Ricci tensor, and show that the vacuum Einstein field equations
give rise to the four additional constraints

Rn�n� = Rn�nm = Rn�nm̄ = Rnmnm̄ = 0 .

Show that there are only two unconstrained components, represented by Rnmnm

and its complex conjugate (or equivalently, by its real and imaginary parts). These
are the gravitational-wave modes, as represented by the Riemann tensor.

cmw
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(e) Show that the link between the remaining components of the Riemann tensor and
the gravitational-wave polarizations is provided by

Rnmnm = − 1

2c2
∂ττ hmm = − 1

2c2
∂ττ (h+ + ih×) .

11.4 Consider the Landau–Lifshitz formulation of the Einstein field equations, as reviewed
in Sec. 6.1.1. Assuming that the Landau–Lifshitz pseudotensor falls off as R−2 in the
far-away wave zone, the vacuum field equations can be expressed as

∂μν Hαμβν = O(R−2) ,

where Hαμβν := gαβgμν − gαμgβν . We wish to formulate these equations in a gauge
that is not harmonic. Instead we choose to impose the gauge conditions

h0 j = 0 , ημνhμν = 0 ,

in which hαβ := ηαβ − gαβ .
(a) Write out the (00), (0 j) and ( jk) field equations explicitly, using the gauge

conditions to simplify the expressions. Keep the equations linear in hαβ , and set
the right-hand sides equal to zero; the O(R−2) residuals are not important for
this problem.

(b) Show that the field equations are invariant under a further gauge transformation
described by

hαβ → hαβ − ∂αζ β − ∂βζ α + (∂μζμ
)
ηαβ ,

in which ζ α is chosen to preserve the four conditions already adopted.
(c) Show that the residual gauge freedom can be exploited to express the gravitational

potentials in the TT gauge.
(d) Show that the field equations then reduce to wave equations for h jk

TT.

11.5 In this problem we examine the response of a free particle to a gravitational wave
propagating in the z-direction, in the reference frame of an observer. In the absence of
other forces, the particle’s motion relative to the observer is governed by Eq. (11.28).
Let the particle undergo a small displacement relative to an unperturbed location at a
distance L from the observer. This is described by ξ j (t) = (L + δξ )e j , in which δξ

depends on time, and the direction e j is expressed in terms of polar angles θ and φ.
(a) Show that

d

dt
δξ = 1

2
L sin2 θ

(
cos 2φ ∂τ h+ + sin 2φ ∂τ h×

)
,

where h+ and h× are the gravitational-wave polarizations as measured in the
observer’s reference frame.

(b) Letting h+ = A+ cos ωt and h× = A× sin ωt , calculate 1
2 m〈(dδξ/dt)2〉, the time-

averaged kinetic energy of the particle, as a function of A+, A×, ω, and direction.
(c) The “antenna pattern” of this gravitational-wave detector is defined to be the

averaged kinetic energy acquired by the particle for a given orientation relative
to the incident wave, divided by the maximum kinetic energy. Plot the antenna
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pattern as a function of θ and φ for each polarization. Present them as parametric
plots, either as 3D plots or as 2D plots in various planes. Discuss the properties
of the patterns.

11.6 Consider an array of particles that are able to move freely in the x-y plane. A gravita-
tional wave impinges on the plane in the z direction. It is described by polarizations
h+ and h× defined relative to the x-y-z basis.
(a) Calculate the acceleration field ξ̈ experienced by the particles. Draw the lines of

force in the x-y plane when the wave is a pure + polarization, and when it is
a pure × polarization. How does the pattern change when the wave is a linear
superposition of each polarization?

(b) Show that the local surface density of the particles is not affected by the gravi-
tational wave, to first order in h+ and h×. Hint: Evaluate the divergence of the
displacement velocity field, ∇ · ξ̇ .

(c) Show that the integral of the acceleration field around a closed path in the x-y
plane always vanishes. Conclude that the acceleration field can be expressed as
the gradient of a potential �GW,

ξ̈ = ∇�GW .

Determine �GW in terms of h+ and h×.

11.7 The gravitational analogue of electromagnetic bremsstrahlung is a process in which
a body of mass m1 passes by a body of mass m2 and is scattered by a small angle.
This is the limit in which v2 � Gm/b, where m is the total mass and b is the distance
of closest approach. We still assume that v � c, and in this problem we employ the
quadrupole formula to calculate the gravitational waves produced by the encounter.

The process corresponds to a Newtonian hyperbolic orbit with a very large
eccentricity e � 1. (For e > 1 the semimajor axis a is not defined, but the semi-
latus rectum p is related as always to h, the angular momentum per unit reduced
mass, by h2 = Gmp.) We introduce the velocity at infinity defined by v2

∞ := 2ε,
where ε is the conserved energy per unit reduced mass, and we define the impact
parameter b := p/e.
(a) Using the Keplerian orbit formulae derived in Chapter 3, establish the following

relations, assuming that the orbit is confined to the x-y plane, and that the orbit’s
pericenter is aligned with the x direction (so that ω = 0):

v∞ =
√

Gm

p
e

[
1 − 1

2
e−2 + O(e−4)

]
,

r = b

cos φ

[
1 − 1

e cos φ
+ O(e−2)

]
,

v = v∞
[−e−1 sin φ, 1 + e−1 cos φ, 0

]+ O(e−2) .

(b) Integrate the orbital equation for φ to leading order in e−1, and show that

sin φ = v∞t

(b2 + v2∞t2)1/2
+ O(e−1) , cos φ = b

(b2 + v2∞t2)1/2
+ O(e−1) .
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(c) Using the quadrupole formula, and taking the waves to be propagating in
the direction of the vector N = [sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ], show that the
gravitational-wave polarizations are given by

h+,× = 2η(Gm)2

c4bR
A+,× ,

in which η := m1m2/m2 and

A+ = −1

2
(1 + cos2 ϑ)

[
cos 2ϕ (C1 + 2C3) + 2 sin 2ϕ (S1 + S3)

]
− 1

2
sin2 ϑ C1 ,

A× = − cos ϑ
[
2 cos 2ϕ (S1 + S3) − sin 2ϕ (C1 + 2C3)

]
,

where Cn := cosn φ and Sn := sin φ cosn−1 φ. An unobservable constant contri-
bution to h+,× has been dropped.

(d) Plot A+ and A× as a function of time in units of t0 = b/v∞ for the following
sets of directions (in degrees): (ϑ, ϕ) = (0, 0), (45, 0), (90, 0), (90, 45), (90, 90),
(45, 90), and (60, 54.7), the last point corresponding to a direction in a plane
tilted 45 degrees relative to the orbital plane, and 45 degrees from the y-direction
in this plane. Running the plots from t = −10t0 to t = +10t0 will reveal the
salient features.

(e) Some of the waveforms have an unusual feature. What is it? Discuss whether it
might be observable to any practical gravitational wave detector.

11.8 Show that the angular pattern functions for an interferometer whose arms make an
angle χ with each other are the same as in Eqs. (11.320), but multiplied by sin χ .
Hint: Orient the arms in the 1-2 plane so that each one makes an angle π

4 − 1
2χ with

respect to the e1 and e2 axes.
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